

Mathematics

Advanced GCE **A2 7890 - 2**

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2008

3890-2/7890-2/MS/R/08

shed by the

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

MMN. My Maths Cloud Com

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/ContentPage

4721 Core Mathematics 1	1
4722 Core Mathematics 2	6
4723 Core Mathematics 3	10
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	21
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	31
4729 Mechanics 2	33
4730 Mechanics 3	35
4731 Mechanics 4	38
4732 Probability & Statistics 1	42
4733 Probability & Statistics 2	46
4734 Probability & Statistics 3	487
4735 Statistics 4	510
4736 Decision Mathematics 1	543
4737 Decision Mathematics 2	598
Grade Thresholds	643

2 (i)

4721 Core Mathematics 1

- 1 (i) n = -2B1
 1
 (ii) n = 3B1
 1
 - (iii) M1 $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or

 $4 \times \sqrt{4}$ with brackets correct if used

 $n = \frac{3}{2}$

A1 2

-

 $\mathbf{M1} \qquad y = (x \pm 2)^2$

 $y = (x-2)^2$ A1

- (ii) $y = -(x^3 4)$ B1 oe 1
- 3 (i) $\sqrt{2 \times 100} = 10\sqrt{2}$ B1
 - (ii) $\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$ B1
- (iii) M1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$ $10\sqrt{2} 3\sqrt{2} = 7\sqrt{2}$ A1
 2
- 4 $y = x^{\overline{2}}$ $2y^2 - 7y + 3 = 0$ M1* Use a substitution to obtain a quadratic or
 - factorise into 2 brackets each containing $x^{\frac{1}{2}}$ (2y-1)(y-3) = 0
 M1depCorrect method to solve a quadratic
 - $y = \frac{1}{2}, y = 3$ A1 $x = \frac{1}{4}, x = 9$ A1
 Attempt to square to obtain x

SR If first M1 not gained and 3 and ½ given as final answers, award B1

5

M1 Attempt to differentiate

A1
$$kx^{-\frac{1}{2}}$$

M1 Correct substitution of
$$x = 9$$
 into their

A1
$$\frac{7}{3}$$
 only

6 (i)
$$(x-5)(x+2)(x+5)$$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$

 $=4\left(\frac{1}{\sqrt{9}}\right)+1$

$$=(x^2-3x-10)(x+5)$$

$$= x^3 + 2x^2 - 25x - 50$$

B1 $x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$

M1 Attempt to multiply a quadratic by a linear factor

A1 3

(ii)

B1 +ve cubic with 3 roots (not 3 line segments)

B1 $\sqrt{(0, -50)}$ labelled or indicated on *y*-axis

B1 (-5, 0), (-2, 0), (5, 0) labelled or indicated on *x*-axis and no other *x*- intercepts

3

7 (i)
$$8 < 3x - 2 < 11$$

$$\frac{10}{3} < x < \frac{13}{3}$$

M1 2 equations or inequalities both dealing with all 3 terms resulting in a < kx < b

A1 10 and 13 seen

A1

(ii)
$$x(x+2) \ge 0$$

$$x \ge 0, x \le -2$$

3

M1 Correct method to solve a quadratic

A1 0, -2

M1 Correct method to solve inequality

A1

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$ 8 (i)

- **B**1 One term correct
- **B**1 Fully correct

2

(ii) $3x^2 - 2kx + 1 = 0$ when x = 1

their $\frac{dy}{dx} = 0$ soi M1

3-2k+1=0

x = 1 substituted into their $\frac{dy}{dx} = 0$ M1

A1√
3

(iii) $\frac{d^2y}{dx^2} = 6x - 4$

Substitutes x = 1 into their $\frac{d^2y}{dx^2}$ and looks at sign M1

When x = 1, $\frac{d^2 y}{dx^2} > 0$: min pt

A1 States minimum CWO

(iv) $3x^2 - 4x + 1 = 0$

their $\frac{dy}{dx} = 0$ M1

(3x-1)(x-1) = 0

correct method to solve 3-term quadratic **M**1

- $x = \frac{1}{3}, x = 1$
- **A1** WWW at any stage
- 3

9	(i)
9	(1)

$$(x-2)^2 + (y-1)^2 = 100$$

$$x^2 + y^2 - 4x - 2y - 95 = 0$$

B1
$$(x-2)^2$$
 and $(y-1)^2$ seen

B1
$$(x \pm 2)^2 + (y \pm 1)^2 = 100$$

3

(ii)
$$(5-2)^2 + (k-1)^2 = 100$$

$$(k-1)^2 = 91$$
 or $k^2 - 2k - 90 = 0$

$$k = 1 + \sqrt{91}$$

M1
$$x = 5$$
 substituted into their equation

A1 correct, simplified quadratic in
$$k$$
 (or y) obtained

(iii) distance from
$$(-3, 9)$$
 to $(2, 1)$

$$=\sqrt{(2-3)^2+(1-9)^2}$$

$$=\sqrt{25+64}$$

$$=\sqrt{89}$$

$$\sqrt{89}$$
 < 10 so point is inside

M1 Uses
$$(x_2 - x_1)^2 + (y_2 - y_1)^2$$

B1 compares their distance with 10 and makes consistent conclusion

3

(iv) gradient of radius =
$$\frac{9-1}{8-2}$$

$$=\frac{4}{3}$$

gradient of tangent =
$$-\frac{3}{4}$$

$$y - 9 = -\frac{3}{4}(x - 8)$$

$$y-9 = -\frac{3}{4}x+6$$

$$y = -\frac{3}{4}x + 15$$

M1 uses $\frac{y_2 - y_1}{x_2 - x_1}$

M1 correct equation of straight line through (8, 9), any non-zero gradient

oe 3 term equation

10 (i)	$2(x^2-3x)+11$
--------	----------------

$$= 2 \left[\left(x - \frac{3}{2} \right)^2 - \frac{9}{4} \right] + 11$$

$$=2\left(x-\frac{3}{2}\right)^2+\frac{13}{2}$$

B1
$$p = 2$$

B1
$$q = -\frac{3}{2}$$

M1
$$r = 11 - 2q^2$$
 or $\frac{11}{2} - q^2$

A1
$$r = \frac{13}{2}$$

B1√

(iii) $36-4\times2\times11$

=-52

(iv) 0 real roots

 $2x^2 - 6x + 11 = 14 - 7x$

 $2x^2 + x - 3 = 0$ (2x+3)(x-1)=0

 $x = -\frac{3}{2}, x = 1$

 $y = \frac{49}{2}, y = 7$

4

<u>B1</u>√

2

uses $b^2 - 4ac$ M1 **A1**

2 **B**1 1

M1* substitute for x/y or attempt to get an equation in 1 variable only

A1 obtain correct 3 term quadratic **M1dep** correct method to solve 3 term quadratic

A1

A1

SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1

June 20 Parts Cloud Com

4722 Core Mathematics 2

1	$(2-3x)^6 = 2^6 + 6.2^5 \cdot (-3x) + 15.2^4 \cdot (-3x)^2$	M1	Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
)32	$x = 64 - 576x + 2160x^2$	A1	Obtain 64 – 576 <i>x</i>
		M1	Attempt third term - binomial coefficient and powers of 2 and $(-)3x$
	_	A1	Obtain $2160x^2$
OI	?	M1	Attempt expansion involving all 6 brackets
		A1	Obtain 64
		A1	Obtain $-576x$
		A1	Obtain $2160x^2$

			AI	Obtain 2100x
	SR	if the expansion is attempted in descending order, at $4860x^4$, $-2916x^5$, $729x^6$	nd the required	d terms are never seen, then B1 B1 B1 for
		4860x, -2916x, /29x	4	
2	(i)	$u_2 = \frac{2}{3}$ $u_3 = \frac{-1}{2}$ $u_4 = 3$	B1 B1√ 3	Obtain correct u_2 $\mathbf{B1}$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3
	(ii)	sequence is periodic / cyclic / repeating	B1 1	Any equivalent comment
3	()	$\frac{1}{2} \times 8^2 \times \theta = 48$ Hence $\theta = 1.5$ radians	M1 A1 2	State or imply $(\frac{1}{2}) 8^2 \theta = 48$ Obtain $\theta = 1.5$ (or 0.477π), or equiv
	(ii)	area = $48 - \frac{1}{2} \times 8^2 \times \sin 1.5$ = $48 - 31.9$ = 16.1		Attempt area of Δ using (½) $8^2 \sin \theta$ Attempt 48 – area of Δ Obtain 16.1 cm^2
4	(i) OR	f(3) = 27a - 36 - 21a + 12 = 0 $6a = 24$ $a = 4$	M1* M1d* A1	Attempt $f(3)$ Equate attempt at $f(3)$ to 0 and attempt to solve Obtain $a = 4$
	OA		M1* M1d* A1	Attempt complete division / matching coeffs Equate remainder to 0 Obtain $a = 4$
	(ii)	f(-2) = -32 - 16 + 56 + 12 $= 20$	M1 A1√ 2	Attempt $f(-2)$ Obtain 20 (or $6a - 4$, following their a)

5 (i)
$$\int x dy = \int ((y-3)^2 - 2) dy$$
$$= \int (y^2 - 6y + 7) dy \quad A.G.$$
$$3 + \sqrt{(2+2)} = 5, \quad 3 + \sqrt{(14+2)} = 7$$
(ii)
$$\frac{1}{3}y^3 - 3y^2 + 7y \Big]_5^7$$

B1 Show
$$x = y^2 - 6y + 7$$
 convincingly

B1 State or imply that required area =
$$\int x dy$$

B1 Use
$$x = 2$$
, 14 to show new limits of $y = 5$, 7

(ii)
$$\left[\frac{1}{3}y^3 - 3y^2 + 7y\right]_5^7$$
 M1 Integration attempt, with at least one

term
$$= {\binom{343}{3}} - 147 + 49 - {\binom{125}{3}} - 75 + 35$$

$$= 16^{1}/_{3} - 1^{2}/_{3}$$

$$= 14^{2}/_{3}$$

A1 All three terms correct
M1 Attempt
$$F(7) - F(5)$$
A1 Obtain $14^{2}/_{3}$, or exact equiv

6 (i)
$$ABC = 360 - (150 + 110) = 100^{\circ}$$
 A.G.

Show convincingly that angle
$$ABC$$
 is 100°

(ii)
$$CA^2 = 15^2 + 27^2 - 2 \times 15 \times 27 \times \cos 100^0$$

= 1094.655...
 $CA = 33.1$

(iii)
$$\frac{\sin C}{15} = \frac{\sin 100}{33.1}$$
 or $\frac{\sin A}{27} = \frac{\sin 100}{33.1}$

M1 Attempt use of sine rule to find angle
$$C$$
 or A

(or equiv using cosine rule)
$$A1\sqrt{}$$
 Correct unsimplified eqn, following their CA

$$C = 26.5^{\circ}$$
 $A = 53.5^{\circ}$
Hence bearing is 263°

A1 Obtain
$$C = 26.5^{\circ}$$
 or $A = 53.5^{\circ}$ (allow 53.4°)
A1 $\sqrt{}$ Obtain 263 or 264 (or 290° – their angle C

$$210 + \text{their angle } A$$

7 (a)
$$\int (x^5 - x^4 + 5x^3) dx$$

$$= \frac{1}{6}x^6 - \frac{1}{5}x^5 + \frac{5}{4}x^4 + (+c)$$

B1 For
$$+c$$
, and no \int or dx (can be given in **(b)(i)** if not given here)

(b) (i)
$$-6x^{-3}$$
 (+c)

M1 Obtain integral of the form
$$kx^{-3}$$

A1 Obtain
$$-6x^{-3}$$
 (+c)

(ii)
$$\left[-6x^{-3}\right]_{2}^{\infty}$$

B1* State or imply that
$$F(\infty) = 0$$
 (for kx^n , $n-1$)

v	- / - 1

- **M1** Attempt sketch of exponential graph (1st quad) - if seen in 2nd quad must be approx correct
 - Correct graph in both quadrants
- **A1 B**1 State or imply (0, 2) only

(ii) $8^x = 2 \times 3^x$

$$\log_2 8^x = \log_2 (2 \times 3^x)$$

$$x \log_2 8 = \log_2 2 + x \log_2 3$$

$$3x = 1 + x\log_2 3$$

$$x (3 - \log_2 3) = 1$$
, hence $x = \frac{1}{3 - \log_2 3}$ **A.G.**

- **M1** Form equation in x and take logs (to any consistent base, or no base) – could use log 8
- **M1** Use $\log a^b = b \log a$
- **M**1 Use $\log ab = \log a + \log b$, or equiv with $\log a/b$
- **M**1 Use $\log_2 8 = 3$
- **A1** Show given answer correctly

OR $8^x = 2 \times 3^x$

$$2^{3x} = 2 \times 3^x$$

$$2^{(3x-1)} = 3^x$$

$$\log_2 2^{(3x-1)} = \log_2 3^x$$

$$(3x-1)\log_2 2 = x \log_2 3$$

$$x (3 - \log_2 3) = 1$$
, hence $x = \frac{1}{3 - \log_2 3}$ **A.G.**

- Use $8^x = 2^{3x}$ **M**1
- Attempt to rearrange equation to $2^k = 3^x$ **M**1
- Take logs (to any base) **M1**
- Use $\log a^b = b \log a$ **M1**
- Show given answer correctly **A1**
- 5

3

9 (a) (i) $2\sin x \cdot \frac{\sin x}{\cos x} - 5 = \cos x$

$$2\sin^2 x - 5\cos x = \cos^2 x$$

$$2 - 2\cos^2 x - 5\cos x = \cos^2 x$$

- $3\cos^2 x + 5\cos x 2 = 0$
- (ii) $(3\cos x 1)(\cos x + 2) = 0$

$$\cos x = \frac{1}{3}$$

$$x = 1.23 \text{ rad}$$

 ≈ 0.837

x = 5.05 rad

- Use $\tan x = \frac{\sin x}{\cos x}$ **M1**
- **M**1 Use $\sin^2 x \equiv 1 - \cos^2 x$
- Show given equation convincingly **A1** 3
- **M**1 Attempt to solve quadratic in cosx
- M1Attempt to find x from root(s) of quadratic Obtain 1.23 rad or 70.5° **A1**
- A1√ Obtain 5.05 rad or 289° (or $2\pi / 360^{\circ}$ - their
 - SR: B1 B1 for answer(s) only
- **(b)** $0.5 \times 0.25 \times \{\cos 0 + 2(\cos 0.25 + \cos 0.5 + \cos 0.75) + \cos 1\}$
- **M**1 Attempt y-coords for at least 4 of the correct 5
- **M1** Use correct trapezium rule, any h, for their y values to find area between x = 0 and x = 1
- **M**1 Correct *h* (soi) for their *y* values
- Obtain 0.837 **A1**
- 4

			10
10 (i)	$u_{15} = 2 + 14 \times 0.5$	M1	Attempt use of $a + (n-1)d$
	= 9 km	A1	Obtain 9 km
		2	
(ii)	$u_{20} = 2 \times 1.1^{19} = 12.2$	B1	State, or imply, $r = 1.1$
. ,		M1	Attempt u_{20} , using ar^{n-1}
	$u_{19} = 2 \times 1.1^{18} = 11.1$	A1	Obtain $u_{20} = 12.2$, and obtain $u_{19} = 11.1$
OR			
		B 1	State, or imply, $r = 1.1$
		M1	Attempt to solve $ar^{n-1} = 12$
		A1	Obtain $n = 20$ (allow $n \ge 20$)
		3	
(iii)	$\frac{2(1.1^n - 1)}{(1.1 - 1)} > 200$	B1	State or imply $S_N = 2(1.1^n - 1)$
			(1.1 - 1)
	$1.1^n > 11$	M1	Link (any sign) their attempt at S_N (of a GP)
	log 11		to 200 and attempt to solve
	$n > \frac{\log 11}{\log 1.1}$	A1	Obtain 26, or 25.2 or better
	n > 25.2 ie Day 26	A1	Conclude $n = 26$ only, or equiv eg Day 26
	•	4	<i>J,</i> 1 6 <i>J</i>
(iv)	swum = $2 \times 30 = 60 \text{ km}$	B1	Obtain 60 km, or 2 x 30km
` /	run = $\frac{1}{2}$ x 30 x (4 + 29 x 0.5)	M 1	Attempt sum of AP, $d = 0.5$, $a = 2$, $n = 30$
	= 277.5 km		•
	$cycle = 2(1.1^{30} - 1)$	M1	Attempt sum of GP, $r = 1.1$, $a = 2$, $n = 30$
	${(1.1-1)}$		r. r , . , . , . , , , , , ,
	= 329.0 km		
	total = 666 km	A1	Obtain 666 or 667 km
		4	

4723 Core Mathematics 3

1	Eithe	er: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
	<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$ Attempt solution of quadratic equation	B1 M1	or equiv at least as far as factorisation or use of formula
		Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
		Obtain 0	B1	ignoring errors in working
2	(i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative
		Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord -3 indicated	A1 2	y-axis and positive x-axis
	(ii)	Show graph indicating attempt at reflection in x-axis	M1	with correct curvature and crossing each negative axis
		Show correct graph with <i>x</i> -coord -3 indicated and <i>y</i> -coord -4 indicated [SC: Incorrect curve earning M0 but both correct intercepts of the cor	A1 A1 ots indic	cated B1]
3		Attempt use of product rule	M1	+ form
		Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
		Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
		Obtain $y - e^2 = 3e(x - e)$	A1 √	or equiv; following their gradient provided obtained by diffn attempt; allow approx values
		Obtain $y = 3ex - 2e^2$	A1 6	in terms of e now and in requested form
4	(i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant k ; any $n < \frac{5}{2}$
		Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
		Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
	(ii)	Attempt relevant calculations with 0.3 and 0.4 Obtain at least one correct value	M1 A1	$x \qquad f(x) \qquad x - f(x) \qquad f'(x)$
		Obtain two correct values and conclude appropriately	A1	0.3 0.3595 -0.0595 83.4 0.4 0.3515 0.0485 113.8 noting sign change or showing 0.3 < f(0.3) and 0.4 > f(0.4) or showing gradients either side of 100

Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or (i) $\cos \theta \cos 60 - \sin \theta \sin 60$ В1 Attempt expansion of both with exact numerical values attempted **M**1 and with $\cos 60 \neq \sin 60$ Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$ **A1** or exact equiv 3 (ii) Attempt correct process for finding R **M**1 whether exact or approx Attempt recognisable process for finding α **M**1 allowing sin / cos muddles Obtain $\sqrt{7}\sin(\theta + 70.9)$ **A1** allow 2.65 for R; allow 70.9 ± 0.1 for α 3 (iii) Attempt correct process to find any value of θ + their α **M**1 Obtain any correct value for θ + 70.9 **A1** -158, -22, 202, 338, ... Attempt correct process to find θ + their α in 3rd quadrant M1 or several values including this Obtain 131 or greater accuracy and no other **A1** [SC for solutions with no working shown: Correct answer only B4; 131 with other answers B2] 4 Attempt use of quotient rule *M1 or equiv; allow u / v muddles (i) Obtain $\frac{75-15x^2}{(x^2+5)^2}$ **A1** or (unsimplified) equiv; this M1A1 available at any stage of question Equate attempt at first derivative to zero and rearrange to solvable form **M**1 dep *M Obtain $x = \sqrt{5}$ or 2.24 **A1** or greater accuracy Recognise range as values less than y-coord of st pt **M**1 allowing < here Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$ **A1** any notation; with \leq now; any exact equiv 6 State $\sqrt{5}$ (ii) B1√ following their x-coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with k 1 (iii) Equate attempt at first derivative to −1 and attempt simplification *M1 and dependent on first M in part (i) Obtain $x^4 - 5x^2 + 100 = 0$ **A1** or equiv involving 3 non-zero terms Attempt evaluation of discriminant or equiv **M**1 dep *M Obtain -375 or equiv and conclude appropriately

4724 Core Mathematics 4

1	(a)	$2x^2 - 7x - 4 = (2x+1)(x-4)$ or		
		$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
		$\frac{2x+1}{3x-2}$ as final answer; this answer only	B 1	Do not ISW
		3x-2	2	
	(b)	For correct leading term <i>x</i> in quotient	B1	Identity method
		For evidence of correct division process	M1	M1: $x^3 + 2x^2 - 6x - 5 = Q(x^2 + 4x + 1) + R$
		Quotient = $x - 2$	A1	M1: $Q = ax + b \text{ or } x + b, R = cx + d \& \ge 2 \text{ ops}$
				[N.B. If $Q = x + b$, this \Rightarrow 1 of the 2 ops]
		Remainder = $x - 3$	A1 4	A2: $a = 1, b = -2, c = 1, d = -3$ SR: <u>B</u> 1 for two
2		Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$	*M1	obtaining result $f(x) + /- \int g(x) dx$
		$\frac{x^5}{5} \ln x - \int \frac{x^5}{5} \cdot \frac{1}{x} (\mathrm{d}x)$	A1	
		$\frac{x^5}{5} \ln x - \frac{x^5}{25}$	A1	
		Correct method with the limits	dep*	M1 Decimals acceptable here
		$\frac{4e^{5}}{25} + \frac{1}{25}$ ISW (Not '+c')	A1	Accept equiv fracts; like terms amalgamated
		23 23	5	
3	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(x^2y) = x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 2xy \text{ or } \frac{\mathrm{d}}{\mathrm{d}x}(xy^2) = 2xy \frac{\mathrm{d}y}{\mathrm{d}x} + y^2$	*B1	
		Attempt to solve their differentiated equation for $\frac{dy}{dx}$	dep*	M1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	A1	WWW AG Must have intermediate line &
			3	could imply "=0" on 1st line
	(ii)(a	A)Attempt to solve only $y^2 - 2xy = 0$ & derive $y = 2x$	B1	AG Any effort at solving $x^2 - 2xy = 0 \rightarrow B0$
		Clear indication why $y = 0$ is not acceptable	B 1	Substituting $y = 2x \rightarrow B0, B0$
			2	
	(b)	Attempt to solve $y = 2x$ simult with $x^2y - xy^2 = 2$	M1	
		Produce $-2x^3 = 2$ or $y^3 = -8$ (-1, -2) or $x = -1$, $y = -2$ only	A1 A1	AEF
		(-1, -2) or $x = -1, y = -2$ only	3	
			_—	

(i) For (either point) + t(difference between vectors) **M**1 r = (3i + 2j + 3k or i + 3j + 4k) + t(-2i + j + k or 2i - j - k) A1

't' can be 's', ' λ ' etc. 'r' must be 'r' but need not be bold Check other formats, e.g. ta + (1-t)b

2

State/imply that their **r** and their $-2\mathbf{i} + \mathbf{j} + \mathbf{k}$ are perpendicular Consider scalar product = 0

*M1 N.B.This *M1 is dep on M1 being earned in (i) dep*M1

Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$

A1

Subst their t into their equation of AB

M1

Obtain $\frac{1}{6}(16\mathbf{i} + 13\mathbf{j} + 19\mathbf{k})$

A1 Accept decimals if clear

5

5 (i) $(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc

SR Allow B1 for $1-\frac{1}{2}x+kx^2$, $k \neq -\frac{1}{8}$ or 0 **B2**

 $(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc

SR Allow B1 for $1-\frac{1}{2}x+kx^2$, $k \neq \frac{3}{8}$ or 0 **B2**

Product = $1-x+\frac{1}{2}x^2$ ignoring x^3 etc

AG; with (at least) 1 intermediate step (cf x^2) **B**1

- (ii) $\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen **B1**
 - $\frac{37}{49}$ or $1 \frac{2}{7} + \frac{1}{2} \left(\frac{2}{7}\right)^2$ seen **B**1
 - $\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$

B1 AG

5

Produce at least 2 of the 3 relevant equations in t and s 6 Solve for t and s (t, s) = (4, -3) AEF

1 + 2t = 12 + s, 3t = -4s, -5 + 4t = 5 - 2sM1 **M1** *A1

Subst (4, -3) into suitable equation(s) & show consistency dep*A1 Either into "3rd" eqn or into all 3 coordinates.

N.B. Intersection coords not asked for

Method for finding magnitude of any vector (ii) Method for finding scalar product of any 2 vectors Using $\cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}$ AEF for the correct 2 vectors

137 (136.8359) or 43.2(43.164...)

- *M1 Expect $\sqrt{29}$ and $\sqrt{21}$
- ***M1** Expect −18

Should be $-\frac{18}{\sqrt{29}\sqrt{21}}$

4

2.39 (2.388236...) or 0.753(0.75335...) rads

(i)

- Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$ **M1** 7 (i)
 - Obtain $-\frac{\cos x}{\sin^2 x}$ or $-(\sin x)^{-2}\cos x$
- **A1**
- Show manipulation to $-\csc x \cot x$ (or vice-versa)
- <u>A</u>1 WWW AG with ≥ 1 line intermed working 3
- (ii) Separate variables, $\int (-)\frac{1}{\sin x \tan x} dx = \int \cot t dt$
- or $\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$ **M1**

Style: For the M1 to be awarded, dx and dt must appear on correct sides or there must be sign on both sides

 $\int -\csc x \cot x \, dx = \csc x \quad (+c)$

or $\int \csc x \cot x \, dx = -\csc x$ **A1**

- $\int \cot t \, dt = \ln \sin t \quad \text{or} \quad \ln |\sin t|$
- (+c)
- or $\int -\cot t \, dt = -\ln \sin t \text{ or } -\ln |\sin t|$ **B**1

Subst $(t,x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$ into their equation containing 'c' M1 and attempt to find 'c'

 $\csc x = \ln \sin t + 2 \text{ or } \ln |\sin t| + 2$

- WWW ISW; cosec $\frac{\pi}{6}$ to be changed to 2 **A1** 5
- A(t+1) + B = 2t
- **M**1 Beware: correct values for A and/or B can be ...
- **A1** ... obtained from a wrong identity
- **A1** Alt method: subst suitable values into given... ...expressions
- 3

Attempt to connect dx and dt dx = t dt s.o.i. AEF

- M1 But not just dx = dt. As **AG**, look carefully. **A1**
- $x + \sqrt{2x-1} \rightarrow \frac{t^2+1}{2} + t = \frac{(t+1)^2}{2}$ s.o.i.
- **B**1 Any wrong working invalidates

 $\int \frac{2t}{(t+1)^2} dt$

- The 'dt' must be present AG WWW **A1**
- (iii) $\int \frac{1}{t+1} dt = \ln(t+1)$
- Or parts u = 2t, $dv = (t+1)^{-2}$ or subst u = t+1**B**1

 $\int \frac{1}{(t+1)^2} \, \mathrm{d}t = -\frac{1}{t+1}$

B1

4

- Attempt to change limits (expect 1 & 3) and use f(t)
- or re-substitute and use 1 and 5 on g(x)**M1**

 $\ln 4 - \frac{1}{2}$

- **A1** AEF (like terms amalgamated); if A0 A0 in (i),
 - then final A0

9 (i) $A: \theta = \frac{1}{2}\pi$ (accept 90°)

B1

 $B: \theta = 2\pi$ (accept 360°)

B2 SR If B0 awarded for point B, allow B1 SR for any angle s.t. $\sin \theta = 0$

(ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$

M1 or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted

 $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$

B1

3

3

 $d\theta$ 2 + 2 cos 2θ = 4 cos² θ with ≥ 1 line intermed work

*B1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2 + 2\cos 2\theta} \qquad \text{s.o.i.}$$

A1 This & previous line are interchangeable

 $= \sec \theta$

- dep*A1 WWW AG

 5
- (iii) Equating $\sec \theta$ to 2 and producing at least one value of θ M1 degrees or radians

 $(x=)-\frac{2}{3}\pi-\frac{\sqrt{3}}{2}$

A1 'Exact' form required

 $(y =) - 2\sqrt{3}$

A1 'Exact' form required

4725 Further Pure Mathematics 1

1 (i) $\begin{pmatrix} 1 & 1 \\ 5 & 1 \end{pmatrix}$	B1	Two elements correct
(5 -1)	B1	All four elements correct
(ii) EITHER	B1	Both diagonals correct
$\frac{1}{3}\begin{pmatrix} 2 & -1 \\ -5 & 4 \end{pmatrix}$	B1	Divide by determinant
OR	2	
	B1 B1	Solve sim. eqns. 1 st column correct 2 nd column correct
2 (i) 5 0.927 or 53.1°	B1 B1 2	Correct modulus Correct argument, any equivalent form
(ii)(a) (b) A(3, 4)	B1 B1 2 B1 B1 B1	Circle centre A (3, 4) Through O, allow if centre is (4, 3) Half line with +ve slope Starting at (3, 0) Parallel to OA, (implied by correct arg shown)
3 (i) $\frac{r}{(r+1)!}$	M1	Common denominator of $(r + 1)!$ or $r!(r + 1)!$
	A1 2	Obtain given answer correctly
(ii) $1 - \frac{1}{(n+1)!}$	M1	Express terms as differences using (i)
	A1 M1 A1	At least 1 st two and last term correct Show pairs cancelling Correct answer a.e.f.
4	B1 M1 M1 A1 A1 A1	Establish result is true, for $n = 1$ (or 2 or 3) Attempt to multiply A and A ⁿ , or vice versa Correct process for matrix multiplication Obtain 3^{n+1} , 0 and 1 Obtain $\frac{1}{2}(3^{n+1} - 1)$ Statement of Induction conclusion, only if 5 marks earned, but may be in body of working

2).
Mark Scheme June 20. That June 20. The June 20.
Mark Scheme M1 Express as difference of two series M1 Use standard results A1 Correct unsimplified answer
A1 Correct unsimplified answer
M1 Attempt to factorise A1 At least factor of $n(n + 1)$
A1 Obtain correct answer
6
B1 Conjugate stated
M1 Use sum of roots
A1 Obtain correct answer
M1 Use sum of pairs of roots
A1 Obtain correct answer
M1 Use product of roots
A1 Obtain correct answers 6
M1 Attempt to find a quadratic factor
A1 Obtain correct factor
M1 Expand linear and quadratic factors
A1A1A1 Obtain correct answers
M1 Substitute 1 imaginary & the real root into eqn
M1 Equate real and imaginary parts
M1 Attempt to solve 3 eqns.
A1A1A1 Obtain correct answers
B1 Enlargement (centre <i>O</i>) scale factor 6
B1 Reflection
$\begin{array}{c} \mathbf{B1} & \text{Mirror line is } y = x \\ 2 & \end{array}$
B1 Stretch in y direction
B1 Scale factor 6, must be a stretch 2
B1 Rotation
B1 36.9° clockwise or equivalent

8	$\alpha + \beta = -k$	B1 State or use correct value	
	$\alpha\beta = 2k$	B1 State or use correct value	
		M1 Attempt to express sum of new terms of $\alpha + \beta$, $\alpha\beta$	v roots in
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1 Obtain correct expression	
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$	A1 Obtain correct answer a.e.f.	
	$\alpha'\beta'=1$	B1 Correct product of new roots s	seen
	$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft Obtain correct answer, must b	e an eqn.
	2	7	
		Alternative for last 5 marks	
		M1 Obtain expression for $u = \frac{\alpha}{\beta}$ in	n terms of k and
		α or k and β	
		A1 Obtain a correct expression	
		A1 rearrange to get α in terms of	и
		M1 Substitute into given equation	
		A1 Obtain correct answer	
9 (i)		M1 Attempt to equate real and import of $(x + iy)^2$ and $5 + 12i$	aginary parts
	$x^2 - y^2 = 5$ and $xy = 6$	A1 Obtain both results	
		M1 Eliminate to obtain a quadration	$\sin x^2$ or y^2
	$\pm(3+2i)$	M1 Solve a 3 term quadratic & ob	tain x or y
		A1 Obtain correct answers as com	plex nos.
(ii)	5 – 12i	B1B1 Correct real and imaginary pa 2	rts
(iii))	M1 Attempt to solve a quadratic e	quation
	$x^2 = 5 \pm 12i$	A1 Obtain correct answers	
	$x = \pm (3 \pm 2i)$	A1A1 Each pair of correct answers	a.e.f.
		4	

10 (i)	M1 Find value of det AB A1 Correct value 2 seen 2
(ii) . (0 3 -1)	M1 Show correct process for adjoint entries A1 Obtain at least 4 correct entries in adjoint B1 Divide by their determinant
$(\mathbf{AB})^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6 - 3a & a - 6 \end{pmatrix}$	A1 Obtain completely correct answer
(iii) EITHER $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2 \end{pmatrix}$	M1 State or imply $(AB)^{-1} = B^{-1}A^{-1}$ A1 Obtain $B^{-1} = (AB)^{-1} \times A$ M1 Correct multiplication process seen A1 Obtain three correct elements A1 All elements correct
OR	M1 Attempt to find elements of B A1 All correct M1 Correct process for B ⁻¹ A1 3 elements correct A1 All elements correct

2

4726 Further Pure Mathematics 2

- Write as $\frac{A}{x-2a} + \frac{Bx+C}{x^2+a^2}$ Get $2ax = A(x^2+a^2) + (Bx+C)(x-2a)$ Choose values of x and/or equate coeff.
 Get $A = \frac{4}{5}$, $B = \frac{4}{5}$, $C = \frac{2}{5}a$
- **M1** Accept *C*=0
- A1 $\sqrt{}$ Follow-on for C=0
- M1 Must lead to at least one of their A,B,CA1 For two correct from correct working only
- A1 For third correct
- 5 For third col

- B1 Get (4,0), (3,0), (-2,0) only Get $(0,\sqrt{5})$ as "maximum"
- **B1** Meets x-axis at 90^0 at all crossing points
- **B1** Use $-2 \le x \le 3$ and $x \ge 4$ only
- $\begin{array}{cc}
 \mathbf{B1} & \text{Symmetry in } Ox \\
 \hline
 \mathbf{5} & \end{array}$

B1

- Quote/derive $dx = \frac{2}{1+t^2} dt$
 - $1+t^2$ Replace all x and dx from their expressions M1 Not dx=dt; ignore limits
 - Tidy to $2/(3t^2+1)$ A1 Not $a/(3t^2+1)$
 - Get k tan⁻¹(At) M1 Allow A=1 if from $p/(t^2+1)$ only Get $k=2/\sqrt{3}$ $A=\sqrt{3}$ Allow $k=a/\sqrt{3}$ from line 3: A FEE
 - Get $k = \frac{2}{3}\sqrt{3}$, $A = \sqrt{3}$ Use limits correctly to $\frac{2}{9}\sqrt{3}\pi$ Allow $k=a/\sqrt{3}$ from line 3; AEEF

 A1

 AEEF
- 4 (i) B1 Correct $y = x^2$

- B1 Correct shape/asymptote
- (ii) Define sech $x = 2/(e^x + e^{-x})$ Equate their expression to x^2 and attempt to simplify Clearly get A.G.
- B1 AEEF
- M1 AE
- 3 B1

A1

- (iii) Cobweb Values > and then < root
 - B1 Only from cobweb

5	(i)	Factorise to $\tan^{n-2}x(1+\tan^2x)$	B1	Or use $\tan^n x = \tan^{n-2} x \cdot \tan^2 x$
J	(1)	Clearly use $1+\tan^2 = \sec^2$	M1	Allow wrong sign
		Integrate to $\tan^{n-1}x/(n-1)$	A1	Quote or via substitution
		Use limits and tidy to A.G.	A1	Must be clearly derived
		Ose minus and tidy to A.G.	4	with the clearly derived
	(ii)	Get $3(I_4 + I_2) = 1$, $I_2 + I_0 = 1$	B1	Write down one correct from reduction formula
		Attempt to evaluate I_0 (or I_2)	M1	$I_2 = a \tan x + b$, $a,b \neq 0$
		Get $\frac{1}{4}\pi$ (or 1 - $\frac{1}{4}\pi$)	A1	- , , , ,
		Replace to $\frac{1}{4}\pi$ - $\frac{2}{3}$	A1	
		•	4	
6	(i)	Attempt to use N-R of correct form with clear $f'(x)$ used	M1	·
	(-)	Get 2.633929, 2.645672	A1	For one correct to minimum of 6 d.p.
		300 2.0000727, 2.0 10 072	A1 √	For other correct from their x_2 in correct NF
			3	1 01 04101 0011001 11011 41101 412 41 0011000 1 11
	(ii)	√7	B1	Allow ±
		0.14575 0.01102	1	
	(iii)	Get $e_1 = 0.14575$, $e_2 = 0.01182$	B1√	From their values
		Get $e_3 = 0.00008$	B1√	D 000000000000000000000000000000000000
		Verify both ≈ 0.00008	B1	From 0.000077 or $0.01182^3/0.14575^2$
			3	
7	(i)	Attempt quotient/product on bracket	M1	
		$Get -3/(2+x)^2$	A1	May be implied
		Use Formulae Booklet or derive from $\tanh y = (1-x)/(2+x)$	M1	Attempt $tanh^{-1}$ part in terms of x
		Get $\frac{-3}{(2+x)^2} \cdot \frac{1}{1 + (1-x)^2(2+x)^2}$	A1 √	From their results above
		(2+x) 1- $((1-x)/(2+x))$		
		Clearly tidy to A.G.	A1	
		Get f''(x) = $2/(1+2x)^2$	B1	cao
			6 SC	Use reasonable ln definition M1
			SC	Get $y=\frac{1}{2}\ln((1-k)/(1+k))$ for $k=(1-x)/(1+2x)$ A1
				Tidy to $y = \frac{1}{2}\ln(3/(1+2x))$ A1
				r
				Clearly tidy to A.G. A1 Cot f''(x)
	(::\	Attachet $f(0)$, $f'(0)$ and $f''(0)$	М1	Get $f''(x)$ B1
(ii)	(11)	Attempt $f(0)$, $f'(0)$ and $f''(0)$	M1 A1√	From their differentiation
		Get $\tanh^{-1}\frac{1}{2}$, -1 and 2	A1√ B1	Only
			PK 1	Unity
		Replace $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3 \ (= \ln \sqrt{3})$		
		Replace $tanh^{-1}/2 = \frac{1}{2} ln3 (=ln\sqrt{3})$ Get $ln\sqrt{3} - x + x^2$	<u>A1</u>	· · · · · · · · · · · · · · · · · · ·
		Get $\ln\sqrt{3} - x + x^2$ Get $\ln\sqrt{3} - x + x^2$	A1 4	Use standard expansion from ½ln3-½ln(1+2x)

		nun 2
4726 Mark S	Scheme	June 20 June
8 (i) Attempt to solve $r = 0$ Get $\alpha = \frac{1}{4}\pi$	M1 A1 2	June 20. The state of the stat
(ii) (a)Get $1 - \sin((2k+1)\pi - 2\theta)$ Expand as $\sin(A+B)$ Use k as integer so $\sin(2k+1)\pi = 0$, And $\cos(2k+1)\pi = -1$	M1 M1 A1	Attempt $f(\frac{1}{2}(2k+1)\pi - \theta)$, leading to 2θ here Or discuss periodicity for general k Needs a clear explanation
(b)Quote $\frac{1}{4}(2k+1)\pi$	3 B1	For general answer or 2 correct (ignore
Select or give $k = 0,1,2,3$	B1 2	other answers given) For all 4 correct in $0 \le \theta < 2\pi$
(iii) roughly	<u> </u>	B1 Correct shape; 2 branches only,
	B1 B1 B1	Clear symmetry in correct rays Get max. $r = 2$ At $\theta = \sqrt[3]{4\pi}$ and $\sqrt[7]{4\pi}$; both required (allow correct answers not in $0 \le \theta < 2\pi$ here)
9 (i) Attempt to use parts Divide out $x/(1+x)$ Correct answer $x\ln(1+x) - x + \ln(1+x)$ Limits to correct A.G.	M1 M1 A1 A1 4 SC	Two terms, one yet to be integrated Or use substitution Quote $\int \ln x dx$ M1 Clear use of limits to A.G. A1 Attempt to diff ate by product rule Clear use of limits to A.G. A1
(ii) (a)Use sum of areas of rect.< Area under curve (between limits 0 and 70)	B1	
Areas = $1x$ heights = $1(\ln 2 + \ln 3 + \ln 70)$	B1 2	Areas to be specified
(b)Explain use of 69 Explain first rectangle Areas as above > area under curve	B1 B1 B1 3	Allow diagram or use of left shift of 1 unit

B1

M1

A1 3 or 232.7

No other numbers; may be implied by

228.39.. or 232.65.. seen; allow 228.4, 232.6

(c) Show/quote $\ln 2 + \ln 3 + \dots \ln 70 = \ln 70!$ Use N = 69, 70 in (i)

Get 228.3, 232.7

4727 Further Pure Mathematics 3

1 (a)(i)	e, r^3, r^6, r^9	M1	For stating e , r^m (any $m cdots 2$), and 2 other different elements in terms of e and r
		A1 2	For all elements correct
(ii)	r generates G	B1 1	For this or any statement equivalent to: all elements of G are included in a group with e and r OR order of $r >$ order of all possible proper subgroups
(b)	m, n, p, mn, np, pm	B1	For any 3 orders correct
		B1 2	For all 6 correct and no extras (Ignore 1 and <i>mnp</i>)
2	METHOD 1		
	$[1, 3, 2] \times [1, 2, -1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c \ (= 17)$	A1	For correct vector OR LHS of equation
	$\theta = \sin^{-1} \frac{ [1, 4, -1] \cdot [-7, 3, -1] }{\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}}$	M1√	For using correct vectors for line and plane f.t. from normal
	V	M1* M1	For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta = \sin^{-1} \frac{6}{\sqrt{18}\sqrt{59}} = 10.6^{\circ}$	A1√ (*dep)	For scalar product. f.t. from their numerator
	(10.609°, 0.18517)	A1 7	For correct angle
	METHOD 2		
	$[1,3,2] \times [1,2,-1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c$	A1	For correct vector <i>OR</i> LHS of equation
	7x - 3y + z = 17	M1√ M1	For attempting to find RHS of equation f.t. from n or LHS of equation For using distance formula from a point on the line,
	$d = \frac{ 21 - 12 + 2 - 17 }{\sqrt{7^2 + 3^2 + 1^2}} = \frac{6}{\sqrt{59}}$	A1√	e.g. (3, 4, 2), to the plane For correct distance. f.t. from equation
	$\theta = \sin^{-1} \frac{\frac{6}{\sqrt{59}}}{\sqrt{1^2 + 4^2 + 1^2}} = 10.6^{\circ}$ (10.609°, 0.18517)	M1 A1	For using trigonometry For correct angle
	(10.007, 0.10217)	7	
3 (i)	$\frac{\mathrm{d}z}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	For differentiating substitution (seen or implied)
	$\frac{dz}{dx} - 1 = \frac{z+3}{z-1} \implies \frac{dz}{dx} = \frac{2z+2}{z-1} = \frac{2(z+1)}{z-1}$	A1 A1 3	For correct equation in z AEF For correct simplification to AG
(ii)	$\int \frac{z-1}{z+1} dz = 2 \int dx$	B1	For $\int \frac{z-1}{z+1} (dz)$ and $\int (1) (dx)$ seen or implied
	$\Rightarrow \int 1 - \frac{2}{z+1} dz \ OR \int 1 - \frac{2}{u} du = 2x (+c)$	M1	For rearrangement of LHS into integrable form OR substitution e.g. $u = z + 1$ or $u = z - 1$
	$\Rightarrow z - 2\ln(z+1) OR z+1-2\ln(z+1) $ $= 2x (+c)$	A1	For correct integration of LHS as $f(z)$
	$\Rightarrow -2\ln(x+y+1) = x-y+c$	A1 4	For correct general solution AEF

4	(i)	$\cos^5 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^5$	B1 For $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ seen or implied
		(2)	z may be used for $e^{i\theta}$ throughout

$$\cos^5 \theta = \frac{1}{32} \left(e^{i\theta} + e^{-i\theta} \right)^5$$
 M1 For expanding $\left(e^{i\theta} + e^{-i\theta} \right)^5$. At least 3 terms and

2 binomial coefficients required *OR* reasonable attempt at expansion in stages

$$\cos^5 \theta = \frac{1}{32} \left(e^{5i\theta} + e^{-5i\theta} + 5 \left(e^{3i\theta} + e^{-3i\theta} \right) + 10 \left(e^{i\theta} + e^{-i\theta} \right) \right)$$
 A1 For correct binomial expansion

$$\cos^{5}\theta = \frac{1}{16}(\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$
M1
For grouping terms and using multiple angles
For answer obtained correctly **AG**

(ii)
$$\cos \theta = 16\cos^5 \theta$$
 B1 For answer obtained correctly AG

B1 For stating correct equation of degree 5

$$OR 1 = 16\cos^4\theta \text{ AEF}$$

$$\Rightarrow$$
 cos θ = 0, cos θ = $\pm \frac{1}{2}$ M1 For obtaining at least one of the values of cos θ from $\cos \theta = k \cos^5 \theta$ OR from $1 = k \cos^4 \theta$

$$\Rightarrow \theta = \frac{1}{2}\pi, \ \frac{1}{3}\pi, \ \frac{2}{3}\pi$$
Al for any two correct values of θ
Al for the 3rd value and no more in θ , θ , π

Ignore values outside θ .

Ignore values outside 0,, θ ,, π

			4
5 (i)	METHOD 1		
	Lines meet where		
	$(x =) k + 2\lambda = k + \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1-3\lambda = -2\mu$		
		M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct values of λ and μ
		D1	For attempting a check in 3rd equation
		B1	OR verifying point of intersection is on both lines
	$\Rightarrow (k-2,4,4)$	A1 6	For correct point of intersection (allow vector)
			SR For finding λ <i>OR</i> μ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1
	METHOD 2		
	$[0,3,1] \cdot [2,-5,-3] \times [1,-4,-2]$		For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division
	$d = \frac{ [0,3,1] \cdot [2,-5,-3] \times [1,-4,-2] }{ \mathbf{b} \times \mathbf{c} }$		by $ \mathbf{b} \times \mathbf{c} $ is not essential)
	$d = c[0, 3, 1] \cdot [-2, 1, -3] = 0$	В1	and showing $d = 0$ correctly
	$\Rightarrow \text{lines intersect}$		and one wing we o concern
	Lines meet where		
	$(x =) (k+) 2\lambda = (k+) \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1 - 3\lambda = -2\mu$		•
	(-)	M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct value of λ <i>OR</i> μ
	$\Rightarrow (k-2,4,4)$	A1	For correct point of intersection (allow vector)
	METHOD 3	711	To correct point of intersection (unow vector)
	e.g. $x-k = \frac{2(y+1)}{-5} = \frac{y+4}{-4}$	M1	For solving one pair of simultaneous equations
	$\Rightarrow y = 4$	A1	For correct value of x , y or z
	z-1 $v+1$	M 1	For coloing for the third region!
	$\frac{z-1}{-3} = \frac{y+1}{-5}$	M1	For solving for the third variable
	$x = k - 2 \ OR \ z = 4$	A 1	For correct values of 2 of x , y and z
	$x-k = \frac{z}{-2}$ checks with $x = k-2$, $z = 4$	B1	For attempting a check in 3rd equation
	$\Rightarrow (k-2, 4, 4)$	A1	For correct point of intersection (allow vector)
(ii)			To contest point of intersection (unow vector)
(11)	$\mathbf{n} = [2, -5, -3] \times [1, -4, -2]$	M1	For finding vector product of 2 directions
			-
	$\mathbf{n} = c[-2, 1, -3]$	A1	For correct normal SR Following Method 2 for (i),
			award M1 A1 $$ for n , f.t. from their n
	(1,-1,1) OR $(1,-4,0)$ OR $(-1,4,4)$	M1	For substituting a point in LHS
	$\Rightarrow 2x - y + 3z = 6$	A1 4	
	$\frac{-2x-y+3z-6}{\text{METHOD 2}}$		
		N / 1	For voing vector equation of along (OD II 4 01 C
	$\mathbf{r} = [1, -1, 1] + \lambda[2, -5, -3] + \mu[1, -4, -2]$	M1	For using vector equation of plane $(OR [1, -4, 0])$ for a)
	$x = 1 + 2\lambda + \mu$,
	$y = -1 - 5\lambda - 4\mu$	A1	For writing 3 linear equations
	$z = 1-3\lambda-2\mu$		
		M1	For eliminating λ and μ
	$\Rightarrow 2x - y + 3z = 6$	A1	For correct equation of plane AEF cartesian
		10	•
		10	

			40
6 (i)	When a, b have opposite signs,	M1	For considering sign of $a b $ OR $b a $ in general or in a specific case
	$a b = \pm ab$, $b a = \mp ba \implies a b \neq b a $	A1 2	For showing that $a b \neq b a $
			Note that $ x = \sqrt{x^2}$ may be used
(ii)	$(a \circ b) \circ c = (a b) \circ c = a b c OR a bc $	M1	For using 3 distinct elements and simplifying $(a \circ b) \circ c$ OR $a \circ (b \circ c)$
a o	$(b \circ c) = a \circ (b c) = a b c = a b c OR \ a bc $	A1 M1 A1 4	For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer
(iii)		B1*	For stating $e = \pm 1$ OR no identity
	EITHER $a \circ e = a \mid e \mid = a \implies e = \pm 1$	M1	For attempting algebraic justification of $+1$ and -1 for e
	$OR e \circ a = e a = a$ $\Rightarrow e = 1 \text{ for } a > 0, \ e = -1 \text{ for } a < 0$	A1	For deducing no (unique) identity
	Not a group	B1	For stating not a group
		(*dep) 4	
		10	

7 (i)

Polar or cartesian values of ω and ω^2 may be used anywhere in this question

For showing 3 points in approximately correct

Allow ω and ω^2 interchanged, or unlabelled

(ii) EITHER $1+\omega+\omega^2$

$$=$$
 sum of roots of cubic $=$ 0

В1

For result shown by any correct method AG

$$OR \quad \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$$

$$\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1)$$

OR sum of G.P.

$$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$$

shown on Argand diagram or explained in terms of

Reference to vectors in part (i) diagram may be made

$$1 + \operatorname{cis} \frac{2}{3} \pi + \operatorname{cis} \frac{4}{3} \pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 0$$

 $(2+\omega)(2+\omega^2) = 4 + 2(\omega + \omega^2) + \omega^3$ (iii) (a)

M1 For using
$$1 + \omega + \omega^2 = 0$$
 OR values of ω , ω^2

$$=4-2+1=3$$

(b)
$$\frac{1}{2+\omega} + \frac{1}{2+\omega^2} = \frac{2+(\omega+\omega^2)+2}{3} = 1$$

For combining fractions OR multiplying top and bottom of 2 fractions by complex conjugates

 $A1\sqrt{2}$ For correct answer f.t. from (a)

For the cubic $x^3 + px^2 + qx + r = 0$ (iv)

METHOD 1

$$\sum \alpha = 2 + 1 = 3 \iff p = -3$$

For calculating two of
$$\sum \alpha$$
, $\sum \alpha \beta$, $\alpha \beta \gamma$

$$\sum \alpha \beta = \frac{2}{2+\omega} + \frac{2}{2+\omega^2} + \frac{1}{3} = \frac{7}{3} \ (=q)$$

For calculating all of
$$\sum \alpha$$
, $\sum \alpha \beta$, $\alpha \beta \gamma$

$$= \frac{2}{2+\omega} + \frac{2}{2+\omega^2} + \frac{1}{3} = \frac{7}{3} \ (=q)$$
 M1

$$OR$$
 all of p, q, r

$$\alpha\beta\gamma = \frac{2}{3} \quad \left(\Rightarrow r = -\frac{2}{3} \right)$$

For at least two of
$$\sum \alpha$$
, $\sum \alpha \beta$, $\alpha \beta \gamma$ correct (or values of p , q , r)

$$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$$
METHOD 2

$$\left(x-2\right)\left(x-\frac{1}{2+\omega}\right)\left(x-\frac{1}{2+\omega^2}\right)=0$$

$$x^{3} + \left(-2 - \frac{1}{2 + \omega} - \frac{1}{2 + \omega^{2}}\right)x^{2}$$

M1

A1

A1

For multiplying out LHS in terms of ω or cis $\frac{1}{3}k\pi$

$$+\left(\frac{1}{\left(2+\omega\right)\left(2+\omega^{2}\right)}+\frac{2}{2+\omega}+\frac{2}{2+\omega^{2}}\right)x$$

$$-\frac{2}{\left(2+\omega\right)\left(2+\omega^2\right)}=0$$
 M1

For simplifying, using parts (ii), (iii) or values of ω

$$\Rightarrow x^3 - 3x^2 + \frac{7}{3}x - \frac{2}{3} = 0$$

For at least two of
$$p$$
, q , r correct

$$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$$

11

8 (i)	$m^2 + 1 = 0 \implies m = \pm i$	M1		For stating and attempting to solve correct auxiliary equation
	$\Rightarrow \text{C.F.}$ $(y =) Ce^{ix} + De^{-ix} = A\cos x + B\sin x$	A1	2	For correct C.F. (must be in trig form) SR If some or all of the working is omitted, award full credit for correct answer
(ii)(a)	$y = p(\ln \sin x)\sin x + qx\cos x$	M1		For attempting to differentiate P.I. (product rule needed at least once)
$\frac{\mathrm{d}y}{\mathrm{d}x} = p^{\frac{2}{3}}$	$\frac{\cos x}{\sin x}\sin x + p(\ln\sin x)\cos x + q\cos x - qx\sin x$	A1		For correct (unsimplified) result AEF
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -$	$-p\sin x - p(\ln\sin x)\sin x + \frac{p\cos^2 x}{\sin x}$ $-2q\sin x - qx\cos x$	A1		For correct (unsimplified) result AEF
	29 3111 x 9x 603 x			
	$-p\sin x + \frac{p\cos^2 x}{\sin x} - 2q\sin x = \frac{1}{\sin x}$	M1		For substituting their $\frac{d^2y}{dx^2}$ and y into D.E.
		M1		For using $\sin^2 x + \cos^2 x = 1$
	$\Rightarrow p - 2(p+q)\sin^2 x \equiv 1$	A1	6	For simplifying to AG (\equiv may be $=$)
(b)	, _F = (_F · 1) 2.12 · · ·			For attempting to find p and q by
(8)		M1		equating coefficients of constant and $\sin^2 x$
				equating coefficients of constant and $\sin x$ AND/OR giving value(s) to x
				(allow any value for x , including 0)
	p = 1, $q = -1$	A1	2	For both values correct
(iii)	G.S.			
()	$y = A\cos x + B\sin x + (\ln\sin x)\sin x - x\cos x$	B1√		For correct G.S. f.t. from their C.F. and P.I. with 2 arbitrary constants in C.F. (allow given form of P.I. if <i>p</i> and <i>q</i> have not been found)
	$\csc x$ undefined at $x = 0, \pi, 2\pi$	M1		For considering domain of $\csc x \ OR \ \sin x \neq 0$
	$OR \sin x > 0$ in $\ln \sin x$			$OR \ln \sin x$ term
	$\Rightarrow 0 < x < \pi$	A1	3	For stating correct range CAO SR Award B1 for correct answer with justification omitted or incorrect
		13	3	

4728 Mechanics 1

1(i)	900a = 600 - 240		M1	N2L with difference of 2 forces, accept 360
	$a = 0.4 \text{ ms}^{-2}$	AG	A1	
			[2]	
(ii)	9 = 5 + 0.4t		M1	v = u + 0.4t or $v = u + (cv 0.4)t$
	t = 10 s		A1	
	$9^2 = 5^2 + 2x0.4s$		M1	or $s=(u+v)t/2$ or $s=ut+0.5xcv(0.4)t^2$
	s = 70 m		A1	
			[4]	

2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction
	Uses Pythagoras R ² =	D*M1	Uses cosine rule $R^2 =$
	$(14\sin 30)^2 +$	A1	$14^2 + 12^2$ -
	$(12+14\cos 30)^2$	A1	2x14x12cos150
	${\rm or } R^2 = (12\sin 30)^2 + (14+12\cos 30)^2 }$		
	R = 25.1 AG	A1	cso (Treat $R^2 = 14^2 + 12^2 + 2x14x12cos30$
(ii)		[5]	as correct)
	Trig to find angle in a valid triangle	M1	Angle should be relevant
	tanB=7/24.1,sinB=7/25.1,cosB=24.1/25.1	A1	sinB/14 = sin150/25.1. Others possible.
	$B = 016$, $(0)16.1^{\circ}$ or $(0)16.2^{\circ}$	A1	Cosine rule may give (0)16.4, award A1
		[3]	

3(i)	a = 6/5 $a = 1.2 \text{ ms}^{-2}$	M1 Acceleration is gradient idea, for portion of graph
	$a = 1.2 \text{ ms}^{-2}$	A1 Accept 6/5
(ii)		
	$s = (6x10/2)$ {or $(6x5/2)$	M1 Area under graph idea or a formula used correctly
	x2 x4}	M1 Double {Quadruple} journey
(iii)	s = 60 m	A1
1		[3]
		M1 v=u+at idea, t not equal to 17 (except v=1.2t-24)
	v = -6 + 1.2(17-15) $v = -3.6 \text{ ms}^{-1}$	A1 $0 = v + cv(1.2)(20-17), v^2 - 2.4v - 21.6 = 0$, etc
	$v = -3.6 \text{ ms}^{-1}$	A1 SR v=3.6 neither A1, but give both A1 if final answer
		[3] given is -3.6

4(i)		M1	Difference of 2 horizontal components, both < 15
	$F = 15\sin 50 - 15\sin 30 = 3.99 \text{ N}$	A1	Not 4 or 4.0
	Left	B1	Accept reference to 30 degree string
		[3]	May be given in ii if not attempted in i
(ii)		M1	Equating 4 vertical forces/components
	$R = f(30, 15\cos 50, 15\cos 30)$	A1	30g is acceptable
	$R = 30-15\cos 50-15\cos 30$	A1	=7.36(78), treat 30g as a misread
	$\mu = 3.99/7.36(78)$	M1	Using F = μ R, with cv(3.99) and cv(7.36(78))
	$\mu = 0.541$ or 0.542 or 0.543	A1	Accept 0.54 from correct work, e.g. 4/7.4
		[5]	

5(i)	2400x5 - 3600x3	B1	Award if g included
	2400v + 3600v	B1	Award if g included
	2400x5 - 3600x3 = 2400v + 3600v	M1	Equating momentums (award if g included)
	$v = 0.2 \text{ ms}^{-1}$	A1	Not given if g included or if negative.
	В	B1	
		[5]	
(ii)(a)	+/-(-2400v + 3600v)	B1	No marks in(ii) if g included
	2400x5 - 3600x3 = -2400v + 3600v	M1	Equating momentums if "after" signs differ
	$v = 1 \text{ ms}^{-1}$	A1	Do not accept if - sign "lost"
(b)	I = 2400 x (5+/-1) or 3600 x (3+/-1) $I = 14400 \text{ kgms}^{-1}$	M1	Product of either mass and velocity change
	$I = 14400 \text{ kgms}^{-1}$	A1	Accept -14400
		[5]	

6(i)	$x = 0.01t^4 - 0.16t^3 + 0.72t^2.$					
	v = dx/dt		M1	Uses differentiation, ignore +c		
	$v = 0.04t^3 - 0.48t^2 + 1.44t.$		A 1	or $v = 4(0.01t^3) - 3(0.16t^2) + 2(0.72t)$		
	$v(2)=1.28 \text{ ms}^{-1}$	AG	A 1	Evidence of evaluation needed		
			[3]			
(ii)	a = dv/dt		M1	Uses differentiation		
	$a = 0.12t^2 - 0.96t + 1.44$		A 1	or $a = 3(0.04t^2) - 2(0.48t) + 1.44$		
	$t^2 - 8t + 12 = 0$	AG	A 1	Simplifies $0.12t^2 - 0.96t + 1.44 = 0$, (or verifies the roots		
			[3]	of QE make acceleration zero)		
(iii)	(t-2)(t-6)=0		M1	Solves quadratic (may be done in ii if used to find $v(6)$)		
	t=2		A 1	Or Factorises v into 3 linear factors M1		
	t = 6		A 1	$v = 0.04t(t-6)^2$ A1 Identifies $t=6$ A1		
	$v(6) = 0 \text{ ms}^{-1}$		B1	Evidence of evaluation needed		
			[4]			
(iv)			B1	Starts at origin		
			B1	Rises to single max, continues through single min		
			B1	Minimum on t axis, non-linear graph		
	Away from A		B1			
	-		[4]			
(v)	$AB = 0.01x6^4 - 0.16x6^3 + 0.72x6^2$		M1	Or integration of $v(t)$, with limits 0, 6 or substitution,		
	AB = 4.32 m		A1	using cv(6) from iii		
			[2]			

Mark Scheme

		[2]	
7(i)	$(R=)0.2x9.8\cos 45$	M1	Not $F = 0.2x9.8\cos 45$ or $0.2x9.8\sin 45$ unless followed
	F=1xR=1x.2x9.8cos45=1.386 N AG	A1	by (eg) $Fr = 1x F = 1.386$ when M1A1
		[2]	
(ii)	Any 1 application of N2L // to plane	M1	Must use component of weight
	with correct mass and number of forces		
	0.4a=0.2gsin45+0.2gsin45-1.38(592)	A 1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A 1	
	$0.2a = 0.2g\sin 45 - T$ or		Accept with 3.465 (or close) instead of a
	0.2a = T + [0.2gsin45 - 1.38(592)]	M1	Accept omission of [term] for M1
	T = 0.693 N	A 1	Accept 0.69
		[5]	
	OR		
	Any 1 application of N2L // to plane		
	with correct mass and number of forces		Must use component of weight
	$0.2a = 0.2g\sin 45 - T$ or	M1	Either correct
	0.2a = T + [0.2gsin45 - 1.38(592)]	A 1	Both correct. Accept omission of [term] for A1 only
	Eliminates a or T	M1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A 1	
	T = 0.693 N	A1	
(iii)	$v^2 = 2 \times 3.465 \times 0.5$	M1	Using $v^2 = 0^2 + 2xcv(3.465)s$
	$v = 1.86 \text{ ms}^{-1}$	A 1	, ,
		[2]	
(iv)	For Q		
	$(0.2)a = (0.2)g\sin 45 - (1)(0.2)g\cos 45.$	M1	Attempting equation to find a for Q
	a=0 [AG]	A 1	Accept from 0.2gsin45 - 1.386
	T = (3/1.86) = 1.6(12)	B1	Accept 2 sf
	For P		•
	$a = 9.8\sin 45$	B1	a = 6.93
	$2.5 = 1.86(14)t + 0.5 \times (9.8\sin 45)t^2$	M1	Using $2.5 = cv(1.86)t + 0.5cv(6.93)t^2$ [not 9.8 or 3.465]
	t = 0.6(223)	A1	Accept 1sf
	time difference $1.612 - 0.622 = 0.99(0)$ s	A1	Accept art 0.99 from correct work
		[7]	-

4729 Mechanics 2

1	200cos35°	B1	
	200cos35° x d = 5000	M1	
	d = 30.5 m	A1 3	3

2	$0.03R = \frac{1}{2}x0.009(250^2 - 150^2)$	M1	$150^2 = 250^2 + 2a \times 0.03$	
	0.03R	B1	$a = \pm 2x10^6/3 \text{ or } \pm 666,667$ (A1)	
	either K.E.	B1	F = 0.009a (M1)	
	R = 6000 N	A1 4	unit errors	4

3 (i)	D = 12000/20	B1	
	12000/20=k x 20 + 600 x 9.8 x 0.1	M1	
	k = 0.6	A1 3	AG
(ii)	$16000/v = 0.6v + 600 \times 9.8 \times 0.1$	M1	
	$0.6 \text{ v}^2 + 588\text{v} - 16000 = 0$	M1	attempt to solve quad. (3 terms)
	$v = 26.5 \text{ m s}^{-1}$	A1 3	
(iii)	$16000/32 - 0.6 \times 32 = 600a$	M1	
		A1	
	$a = 0.801 \text{ m s}^{-2}$	A1 3	0.80 or 0.8 9

4 (i)	$0 = 35\sin\theta \times t - 4.9t^2$	M1	$R=u^2\sin 2\theta/g$ only ok if proved
	$t = 35\sin\theta/4.9$ $50\sin\theta/7$ $R = 35\cos\theta \times t$ aef	A1 B1	or 70sinθ/g aef
	K – 55coso x t aei	ы	their t
	$R = 35^2 \sin\theta \cdot \cos\theta/4.9$	M1	eliminate t
	$R = 125\sin 2\theta$	A1 5	emmate
			AG
(ii)	$110 = 125\sin 2\theta$	M1	
	$\theta = 30.8^{\circ} \text{ or } 59.2^{\circ}$	A1+1	
	t = 3.66 s or 6.13 s	A1+1 5	10

5 (i)	$3/8 \times 3$ (1.125) 0.53d = 5x0.02 + (10 + 3/8x3) x 0.5	B1 M1		c.o.m. hemisphere 0.53e=3x5/8x0.5+8x0.02+13x .01
		A1		0.53f=3x3/8x0.5-5x0.02-10x0.01
	d = 10.7	A1	4	AG (e = 2.316 f = 0.684)
(ii)	Attempt to calc a pair relevant to P,G	M1		distance / angle
	OP=0.9 (pair), p= 73.3° q= 16.7° r= 76.9°	A1		not a complimentary pair
	(77.2°) , s=13.1° (12.8°) AC=0.86,			
	BC=0.67, AD=10.4 BD=10.2			
	r > p, $s < q$, $p + s < 90$,	M1		make relevant comparison
	0.67 < 0.86, $10.2 < 10.4$			0.7 < 0.9 (OG < OP) 10.7 < 10.9
	it is in equilibrium	A1	4	8

Mark Scheme

4729	Ма	ırk Sch	neme		June 20	Whaths Cloud com
6 (i)	$T\cos 60^{\circ} = S\cos 60^{\circ} + 4.9$	M1 A1		Resolving vertically nb for M1: (must be components – all 4 cases)		OND
	$T\sin 60^{\circ} + S\sin 60^{\circ} = 0.5 \times 3^{2}/0.4$	M1		Res. Horiz. $mr\omega^2$ ok if $\omega \neq 3$		COM
		A1		If equal tensions 2T=45/4 M1 only		
	$(S + 9.8)\sin 60^{\circ} + S\sin 60^{\circ} = 45/4$	M1				
	S = 1.60 N	A1				
	T = 11.4 N	A1	7			
(ii)	$T\cos 60^{\circ} = 4.9$	M1		Resolving vertically (component)		
	T = 9.8	A1				
	$T\sin 60^\circ = 0.5 \times 0.4\omega^2$	M1		Resolving horiz. (component)		
	(51 1 1 1	A1	_		10	
	$\omega = 6.51 \text{ rad s}^{-1}$	A1	5	or 6.5	12	

7 (i)	$u = 3 \text{ m s}^{-1}$	B1		
	6 = 2x + 3y	M1		
	() (2	A1		
	e = (y - x)/3	M1	(2/) (
	y=2	A1 A1 6	$(e = \frac{2}{3})$ (equs must be consistent) AG	
(ii)	$\begin{vmatrix} y-z \\ v_h = 2 \end{vmatrix}$	B1	or (B1) $\frac{1}{2}$ mx2 ²	
(11)	$v_v^2 = 2 \times 9.8 \times 4$	M1	$\frac{\text{(B1) } 72\text{II} \times 2}{(\text{B1) } \frac{1}{2}\text{mxv}^2}$	
	$v_v = 8.85$ (14 $\sqrt{10/5}$)	A1	(81) /2111.	
			(B1) mx9.8x4	
	speed = $(8.85^2 + 2^2)$	M1	$v = \sqrt{(2^2 + 2x9.8x4)}$	
	9.08 m s^{-1}	A1		
	$\tan^{-1}(8.85/2)$	M1	or $\cos^{-1}(2/9.08)$	
	77.3° to horizontal	A1 7	12.7° to vertical	13

8 (i)	com of Δ 3 cm right of C	B1			
	(48+27)x = 48x4 + 27x11	M1			
	(10.27) W 10AT 27ATT	A1			
	$\bar{x} = 6.52$	A1			
	com of Δ 2 cm above AD	B1			
	(48+27) $y = 48x3 + 27x2$	M1			
	$(40^{\circ}27)y = 40X3 + 27X2$	A1			
	$\frac{-}{y} = 2.64$	A1	8		
(ii)	14F	B1		can be implied e.g. 7/sin30°. F	
	3gcos30° x 6.52	B1		7.034 (AG) or (6.52-2.64tan30°)	
	3gsin30° x 2.64	B1		52.0° (GAH) or (above)xcos30°	
				(5.00)xcos30° (4.33)	
	14F=3gcos30°x6.52-3gsin30°x2.64	M1		$14F = 3x9.8x7.034x\cos 52.0^{\circ}$	
	F = 9.09 N	A1	5		13

4730

4730 Mechanics 3

	1 (i) $T = (1.35 \text{mg})(3 - 1.8) \div 1.8$	B1		
	[0.9mg = ma]	M1		For using $T = ma$
	Acceleration is 8.82ms ⁻²	A1	3	
Ī	(ii) Initial EE =			
	$(1.35\text{mg})(3-1.8)^2 \div (2x1.8)$	B1		
	$[\frac{1}{2} \text{ mv}^2 = 0.54 \text{mg}]$	M1		For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.25ms ⁻¹	A1	3	

2	(i)	M1		For using NEL vertically
	Component is 8esin27°	A 1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1+e)$	B1ft		ft 8sin27° + candidate's ans. in (i)
				For using $ I = m x$ change in
	$ I = 0.2 \times 5.81$	M1		velocity
				ft incorrect ans. in (i) providing
	Magnitude of Impulse is 1.16 kgms ⁻¹	A1ft	3	both M marks are scored.

3				For using the principle of
				conservation of momentum in the
		M1		i direction
	$0.8x12\cos 60^{\circ} = 0.8a + 2b$	A1		
		M1		For using NEL
	$0.75 \times 12 \cos 60^{\circ} = b - a$	A1		
				For eliminating b; depends on at
	[4.8 = 0.8a + 2(a + 4.5)]	DM1		least one previous M mark
	a = -1.5	A1		
	Comp. of vel. perp. to l.o.c. after impact is			
	12sin60°	B1		
				For correct method for speed or
		M1		direction
	The speed of A is 10.5ms ⁻¹	A1ft		ft $v^2 = a^2 + 108$
				Accept $\theta = 81.8^{\circ}$ if θ is clearly
				and appropriately indicated;
	Direction of A is at 98.2° to l.o.c.	A1ft	10	ft $\tan^{-1}\theta = (12\sin 60^{\circ})/ a $

4	(i) $[\text{mgsin } \alpha - 0.2\text{mv} = \text{ma}]$	M1		For using Newton's second law
	$5 \frac{dv}{dt} = 28 - v$	A1		AG
	$\left[\int \frac{5}{28 - v} dv = \int dt\right]$	M1		For separating variables and integrating
	$(C) - 5\ln(28 - v) = t$	A1		mogramig
	(C) 3m(20 V) t	M1		For using $v = 0$ when $t = 0$
	1.5(00)(001)(5			ft for $\ln[(28 - v)/28] = t/A$ from
	$\ln[(28 - v)/28] = -t/5$	A1ft		C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t
				ft for $v = 28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	A1ft	88	ln[(28 - v)/28] = t/A previously
	(ii)			For using $a = (28 - v(t))/5$ or $a =$
				$d(28-28e^{-t/5})dt$ and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
				ft from incorrect v in the form
	Acceleration is 0.758ms ⁻²	A1ft	2	$a + be^{ct}$ ($b \neq 0$); Accept 5.6/ e^2

5	(i)			For taking moments about B or
				about A for the whole or
				For taking moments about X for
				the whole and using $R_A + R_B =$
		N / 1		
	1 4B 150 0.05 + 120 0.25	M1		280 and $F_A = F_B$
	$1.4R_A = 150x0.95 + 130x0.25$ or			
	$1.4R_B = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	$0.5R_{\rm B}$	A1		
	$-0.25 \times 130 = 0$			
	$R_A = 125N$	A1		AG
	$R_{\rm B} = 155N$	B1	4	
	(ii)			For taking moments about X for
		M1		XA or XB
	$1.2F_A = -150x0.45 + 0.9R_A$ or			
	$1.2F_B = 0.5R_B - 130x0.25$	A1		
	F_{A} or $F_{B} = 37.5N$	A1ft		$F_B = (1.25R_B - 81.25)/3$
	$F_{\rm B}$ or $F_{\rm A} = 37.5 {\rm N}$	B1ft	4	,
	(iii) Horizontal component is 37.5N to the			ft H = F or H = $56.25 - 0.75$ V or
	left	B1ft		12H = 325 + 5V
				For resolving forces on XA
	$[Y + R_A = 150]$	M1		vertically
	Vertical component is 25N upwards	A1ft	3	ft $3V = 225 - 4H$ or $V = 2.4H$ -65

6	(i)			For applying Newton's second law
	[0.36 - 0.144x = 0.1a]	M1		
	$\ddot{x} = 3.6 - 1.44x$	A1		
	$\ddot{y} = -1.44y \rightarrow \text{SHM}$ or			
	$d^{2}(x-2.5)/dt^{2} = -1.44(x-2.5)$ SHM	B1		
		M1		For using $T = 2\pi/n$
	Of period 5.24s	A1	5	AG
	(ii) Amplitude is 0.5m	B1		
		M1		For using $v^2 = n^2(a^2 - y^2)$
	$0. 48^2 = 1.2^2 (0.5^2 - y^2)$	A1ft		
	Possible values are 2.2 and 2.8	A1	4	
	(iii) $[t_0 = (\sin^{-1}0.6)/1.2; t_1 = (\cos^{-1}0.6)/1.2]$	M1		For using $y = 0.5\sin 1.2t$ to find t_0 or y
				$= 0.5\cos 1.2t$ to find t_1
	$t_0 = 0.53625 \dots \text{ or } t_1 = 0.7727 \dots$	A1		Principal value may be implied
	(a)			For using $\Delta t = 2t_0$ or
	$[2(\sin^{-1}0.6)/1.2 \text{ or } (\pi - 2\cos^{-1}0.6)/1.2]$	M1		$\Delta t = T/2 - 2t_1$
	Time interval is 1.07s	A1ft		ft incorrect t ₀ or t ₁
	(b)			From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft
				2.62 - ans(a) or
	Time interval is 1.55s	B1ft	5	incorrect t ₀ or t ₁

_				
7	(i)	M1		For using KE gain = PE loss
	$\frac{1}{2} \text{ mv}^2 = \text{mga}(1 - \cos \theta)$	A1		
	$aw^2 = 2g(1 - \cos\theta)$	B1	3	AG From v = wr
	(ii)	M1		For using Newton's second law radially (3 terms required) with accel = v^2/r or w^2r
	$mv^2/a = mgcos \theta - R \text{ or } maw^2 = mgcos \theta - R$ $[2mg(1 - cos \theta) = mgcos \theta - R]$	A1 DM1		For eliminating v ² or w ² ; depends on at least one previous M1
		Alft	4	ft sign error in N2 equation
	$R = mg(3\cos\theta - 2)$ (iii) $[mg\sin\theta = m(accel.) or$ $2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ Accel. $(=a\ddot{\theta}) = g\sin\theta$	M1 A1		For using Newton's second law tangentially or differentiating $aw^2 = 2g(1 - \cos \theta)$ w.r.t. t
	$[\theta = \cos^{-1}(2/3)]$ Acceleration is 7.30ms ⁻²	M1 A1ft	4	For using $R = 0$ ft from incorrect R of the form $mg(A\cos +B)$, $A \neq 0$, $B \neq 0$;
		AIII	4	accept $g\sqrt{5}/3$
	(iv) $dR/dt = (-3mg\sin\theta) \sqrt{2g(1-\cos\theta)/a}$	M1		For using rate of change = $(dR/d\theta)(d\theta/dt)$ ft from incorrect R of the form
	αισαι (-5mgsmσ) η 2 g (1 - cos σ) / α	A1ft M1		mg(Acos +B), $A \neq 0$ For using $\cos \theta = 2/3$
	Rate of change is $-mg \sqrt{\frac{10 g}{3 a}} \text{ Ns}^{-1}$	A1ft	4	Any correct form of \dot{R} with $\cos \theta = 2/3$ used; ft with from incorrect R of the form mg(Acos +B), $A \neq 0$, $B \neq 0$

4731 Mechanics 4

1	By conservation of angular momentum $1.5 \times 21 + I_G \times 36 = 1.5 \times 28 + I_G \times 34$	M1 A1A1	Give A1 for each side of the equation
	$I_G = 5.25 \text{ kg m}^2$	A1	or $1.5(28-21) = I_G(36-34)$
2 (i)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $0^2 = 8^2 + 2\alpha(2\pi \times 16)$	M1	
	$\alpha = -\frac{1}{\pi} = -0.318$	A1 2	Accept $-\frac{1}{\pi}$
	Angular deceleration is 0.318 rad s ⁻²		
(ii)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $\omega^2 = 8^2 + 2\alpha(2\pi \times 15)$	M1	or $0^2 = \omega^2 + 2\alpha(2\pi)$
	$\omega = 2 \text{ rad s}^{-1}$	A1 ft	ft is $\sqrt{64-60\pi \alpha }$ or $\sqrt{4\pi \alpha }$ Allow A1 for $\omega = 2$ obtained using
		4	Allow A1 for $\omega = 2$ obtained using $\theta = 16$ and $\theta = 15$ (or $\theta = 1$)
(iii)	Using $\omega_1 = \omega_0 + \alpha t$, $0 = \omega + \alpha t$	M1	or $2\pi = 0t - \frac{1}{2}\alpha t^2$
	$t = 2\pi = 6.28 \text{ s}$	A1 ft	If is $\frac{\omega}{ \alpha }$ or $\sqrt{\frac{4\pi}{ \alpha }}$ Accept 2π
3	$A = \int_0^3 (2x + x^2) \mathrm{d}x$	M1	Definite integrals may be evaluated by calculator (i.e with no working shown)
	$= \left[x^2 + \frac{1}{3}x^3 \right]_0^3 = 18$	A1	
	$A\overline{x} = \int_0^3 x(2x + x^2) \mathrm{d}x$	M1	
	$= \left[\frac{2}{3}x^3 + \frac{1}{4}x^4 \right]_0^3 = \frac{153}{4} = 38.25$	M1	Integrating and evaluating (dependent on previous M1)
	$\overline{x} = \frac{38.25}{18} = \frac{17}{8} = 2.125$	A1	
	$A\overline{y} = \int_0^3 \frac{1}{2} (2x + x^2)^2 dx$	M1	or $\int_0^{15} (3 - (\sqrt{y+1} - 1)) y dy$
	$= \int_0^3 (2x^2 + 2x^3 + \frac{1}{2}x^4) \mathrm{d}x$	M1	Arranging in integrable form
	$= \left[\frac{2}{3}x^3 + \frac{1}{2}x^4 + \frac{1}{10}x^5 \right]_0^3 = 82.8$	M1	Integrating and evaluating SR If ½ is missing, then M0M1M1A0
	$\overline{y} = \frac{82.8}{18} = 4.6$	A1	can be earned for \overline{y}

4 (i)	β 6·3 50° 6·3 50° -V _B	B1	Correct velocity triangle
	$w^2 = 6.3^2 + 10^2 - 2 \times 6.3 \times 10\cos 50^\circ$	M1	
	$w = 7.66 \text{ m s}^{-1}$	A1	
	$\frac{\sin \alpha}{\cos \alpha} = \frac{\sin 50^{\circ}}{\cos \alpha}$	M1	This mark cannot be earned from work
	6.3 w $\alpha = 39.04^{\circ}$ ($\beta = 90.96^{\circ}$)		done in part (ii)
	Bearing is $205 - \alpha = 166^{\circ}$	A1	
		5	
	OR $\begin{pmatrix} 6.3\sin 75 \\ 6.3\cos 75 \end{pmatrix} - \begin{pmatrix} 10\sin 25 \\ 10\cos 25 \end{pmatrix} = \begin{pmatrix} 1.859 \\ -7.433 \end{pmatrix}$ M1A1		
	M1		Finding magnitude or direction
	$w = \sqrt{1.859^2 + 7.433^2} = 7.66$ A1		
	Bearing is $180 - \tan^{-1} \frac{1.859}{7.433} = 166^{\circ}$ A1		
(ii)	As viewed from B	B1 ft	Diagram showing path of A as viewed from B May be implied Or B1 for a correct (ft) expression for d^2 in terms of t
	$d = 2500 \sin 14.04$	M1	or other complete method
	= 607 m	A1	Accept 604.8 to 609
		3	<i>SR</i> If $\beta = 89^{\circ}$ is used, give A1 for 684.9 to 689.1

5 (i)	$V = \int_{a}^{4a} \pi(a x) \mathrm{d}x$	M1	(Omission of π is an accuracy error)
	$= \left[\frac{1}{2} \pi a x^2 \right]_a^{4a} = \frac{15}{2} \pi a^3$	M1	
	Hence $m = \frac{15}{2} \pi a^3 \rho$	M1 M1	For $\int y^4 dx$
	$I = \sum_{n=1}^{\infty} \frac{1}{2} (\rho \pi y^2 \delta x) y^2 = \int_{-\infty}^{\infty} \frac{1}{2} \rho \pi y^4 dx$	A1	101 Jy di
	$= \int_{a}^{4a} \frac{1}{2} \rho \pi a^2 x^2 \mathrm{d}x$	A1 ft	Substitute for y^4 and correct limits
	$= \left[\frac{1}{6} \rho \pi a^2 x^3 \right]_a^{4a} = \frac{21}{2} \rho \pi a^5$	A1	
	$= \frac{7}{5} (\frac{15}{2} \pi a^3 \rho) a^2 = \frac{7}{5} m a^2$	A1 (ag) 8	
(ii)	MI about axis, $I_A = \frac{7}{5}ma^2 + ma^2$	M1	Using parallel axes rule
	$=\frac{12}{5}ma^2$	A1	
	Period is $2\pi \sqrt{\frac{I}{mgh}}$	M1	
	$=2\pi\sqrt{\frac{\frac{12}{5}ma^2}{mga}}=2\pi\sqrt{\frac{12a}{5g}}$	A1 ft 4	ft from any I with $h = a$
6 (i)	$I = \frac{1}{3}m\{a^2 + (\frac{3}{2}a)^2\} + m(\frac{1}{2}a)^2$	M1 M1	MI about perp axis through centre Using parallel axes rule
	$= \frac{13}{12}ma^2 + \frac{1}{4}ma^2 = \frac{4}{3}ma^2$	A1 (ag) 3	osing puramer unto ture
(ii)	By conservation of energy	M1	Equation involving KE and PE
	$\frac{1}{2}(\frac{4}{3}ma^2)\omega^2 - \frac{1}{2}(\frac{4}{3}ma^2)\frac{9g}{10a} = mg(\frac{1}{2}a - \frac{1}{2}a \times \frac{3}{5})$	A1	
	$\frac{2}{3}ma^2\omega^2 - \frac{3}{5}mga = \frac{1}{5}mga$		
	$\omega^2 = \frac{6g}{5a}$	A1 (ag) 3	
(iii)	$mg\cos\theta - R = m(\frac{1}{2}a)\omega^2$	M1	Acceleration $r\omega^2$ and three terms
	$mg \times \frac{3}{5} - R = \frac{3}{5}mg$	A1	(one term must be R)
	R = 0	A1 (ag)	$SR mg \cos \theta + R = m(\frac{1}{2}a)\omega^2 \Rightarrow R = 0$ earns M1A0A1
	$mg(\frac{1}{2}a\sin\theta) = I\alpha$	M1A1	Applying $L = I\alpha$
	$\alpha = \frac{3g}{10a}$	A1	
	$mg\sin\theta - S = m(\frac{1}{2}a)\alpha$	M1A1	Acceleration $r\alpha$ and three terms
	$S = \frac{4}{5}mg - \frac{3}{20}mg$ $= \frac{13}{20}mg$	A1	(one term must be S) or $S(\frac{1}{2}a) = I_G \alpha = \frac{13}{12} ma^2 \alpha$
	20 0	9	

7 (i)	U = 3mgx + 2mg(3a - x)	B1B1	Can be awarded for terms listed
	$+\frac{mg}{2a}(x-a)^2 + \frac{2mg}{2a}(2a-x)^2$	B1B1	separately
	$= \frac{mg}{2a} (3x^2 - 8ax + 21a^2)$	M1	Obtaining $\frac{dU}{dx}$
	$\frac{\mathrm{d}U}{\mathrm{d}x} = 3mg - 2mg + \frac{mg}{a}(x - a) - \frac{2mg}{a}(2a - x)$	A1	(or any multiple of this)
	$=\frac{3mgx}{a}-4mg$		
	When $x = \frac{4}{3}a$, $\frac{dU}{dx} = 4mg - 4mg = 0$		
	so this is a position of equilibrium	A1 (ag)	
	$\frac{\mathrm{d}^2 U}{\mathrm{d}x^2} = \frac{3mg}{a}$	M1	
	$\begin{vmatrix} \alpha x & a \\ > 0 \end{vmatrix}$, so equilibrium is stable	A1 (ag) 9	
(ii)	KE is $\frac{1}{2}(3m)v^2 + \frac{1}{2}(2m)v^2$	M1A1	
	Energy equation is $U + \frac{5}{2}mv^2 = \text{constant}$		
	Differentiating with respect to t	M1	Differentiating the energy equation
	$\left[\left(\frac{3mgx}{a} - 4mg \right) \frac{dx}{dt} + 5mv \frac{dv}{dt} = 0 \right]$	A1 ft	(with respect to t or x)
	$\frac{3gx}{a} - 4g + 5\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = 0$	A1 ft	
	Putting $x = \frac{4}{3}a + y$, $\frac{3gy}{a} + 5\frac{d^2y}{dt^2} = 0$	M1A1 ft	Condone \ddot{x} instead of \ddot{y} Award M1 even if KE is missing
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -\frac{3g}{5a}y$, , ,
	Hence motion is SHM	A1 (ag)	Must have $\ddot{y} = -\omega^2 y$ or other
	with period $2\pi \sqrt{\frac{5a}{3g}}$	A1 9	satisfactory explanation

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

Penalise o	over-rounding only once in paper.		t and seem to - 3515, 15 W for fator rounding
1(i)	(a) -1	B1	allow ≈ -1 or close to -1 not "strong corr'n", not -0.99
	(b) 0	B1 2	allow ≈ 0 or close to 0 not "no corr'n"
(ii)	4 3 2 1 or 1 2 3 4	M1	Ranks attempted, even if opp
	1 3 4 2 4 2 1 3	A1	
	Σd^2 (= 14)	M1	Dep M1 or $S_{xy} = 23^{-100}/_4$ or $S_{xx} = S_{yy} = 30^{-100}/_4$
	$1 - \underline{\frac{6\Sigma d^2}{4(4^2-1)}}$	M1	Dep 2^{nd} M1 $S_{xy} / / (S_{xx} S_{yy})$
	= -0.4 oe	A1 5	
Total		7	
2(i)	$\frac{{}^{2}C_{2}}{{}^{15}C_{5}}$ $\frac{x}{{}^{8}C_{3}}$	M1	$^{7}\text{C}_{2} \times ^{8}\text{C}_{3}$ or 1176 : M1
.,	75C ₅	M1	(Any C or P)/ 15 C ₅ : M1 (dep < 1)
			or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or 0.0392: M1
			\times^5 C ₂ or \times 10 : M1 (dep \ge 4 probs mult)
	$= \frac{56}{143}$ or $\frac{1176}{3003}$ or 0.392 (3sfs)	A1 3	
· · · · · · · · · · · · · · · · · · ·	30 20		if 2↔3, treat as MR max M1M1
(ii)	$3! \times 2! \text{ or } ^{3}P_{3} \times ^{2}P_{2} \text{ not in denom}$	M1	BABAB seen: M1
	= 12	A1 2	120-12: M1A0 NB $^{4!}/_{2!} = 12: M0A0$
Total		5	$\frac{1NB}{2!} - 12. \text{ MOAO}$
3(i)(a)	0.9368 or 0.937	B1 1	
(b)	$0.7799 - 0.5230$ or ${}^{8}C_{5} \times 0.45^{3} \times 0.55^{5}$	M1	Allow 0.9368 – 0.7799
(6)	= 0.2569 or 0.2568 or 0.257	A1 2	71110W 0.5500 0.7755
(c)	0.7799 seen		${}^{8}C_{5}x0.45^{3}x0.55^{5} + {}^{8}C_{4}x0.45^{4}x0.55^{4} + {}^{8}C_{3}x\ 0.45^{5}\ x\ 0.55^{3}\ :\ M2$
(-)	-0.0885 (not 1 – 0.0885)		1 term omitted or wrong or extra: M1
	= 0.691 (3 sfs)	A1 3	
(ii)(a)	10 C ₂ x $(^{7}/_{12})^{8}$ x $(^{5}/_{12})^{2}$ seen	M1	or 0.105 seen, but not ISW for A1
	= 0.105 (3 sfs)	A1 2	
(b)	$2^{31}/_{72}$ or $^{175}/_{72}$ or 2.43 (3 sfs)	B1 1	$NB^{12}/_{5} = 2.4$: B0
Total		9	
4(i)	$^{1}/_{20} \times ^{1}/_{10} \text{ or } ^{1}/_{200} \text{ or } 0.005$	M1	
	x 2	Mldep	
(ii)	$ = {}^{1}/{}_{100} \text{ or } 0.01 $ $ E(X) = 0 + 50x^{1}/{}_{10} + 500x^{1}/{}_{20} \text{ or } $	A1 3 M1	or eg 20 goes: 2 × £0.50 + £5.00
(11)	$0+0.5x^{1}/_{10}+5x^{1}/_{20}$	A1	of eg 20 goes. 2 \ 10.30 + 13.00 = £6.00
	$= 30p$ $= £0.30 \text{ or }^{3}/_{10}$	M1	$(\text{``£6.00''} + 20 \times £0.20) \div 20$
	Charge " $30p$ " + $20p$ or $0.3 + 0.2$	1411	condone muddled units eg 0.3 + 20
		A1 4	condone madared amis eg v.s × 20
	= 50p or 0.50 or 0.5		x = 20, 70, 520 : M1A1
			$20 \times {}^{17}/_{20} + 70 \times {}^{1}/_{10} + 520 \times {}^{1}/_{20}$: M1
			= 50 A1
			x, (x-50), (x-500) : M1A1
			x, (x-50), (x-500) . WITAT $x^{17}/_{20} + (x-50)^{1}/_{10} + (x-500)^{1}/_{20} = 20$:
			M1
			x = 50 : A1
			Ignore "£" or "p"
Total		7	1511010 & 01 p

			0
5(i)	$^{12}/_{22} \times ^{11}/_{21}$	M1	or ${}^{12}C_2 / {}^{22}C_2$
	$= \frac{2}{7}$ oe or 0.286 (3 sfs)	A1 2	
(ii)	$^{7}/_{15} \times ^{6}/_{14} \times ^{8}/_{13}$ or $^{8}/_{65}$ oe	M1	Numerators any order $C_2 \times {}^8C_1$:M1
	$\times 3$ oe	M1	$3 \text{ x prod any } 3 \text{ probs} (\text{any C or P})^{15} \text{C}_3 : \text{M1}$
	$= {}^{24}/_{65}$ or 0.369 (3 sfs)	A1 3	(dep <1)
			$1-(\frac{8}{15}x^{7}/_{14}x^{6}/_{13}+3\times \frac{8}{15}x^{7}/_{14}x^{7}/_{13}+\frac{7}{15}x^{6}/_{14}x^{5}/_{13}) :$
			M2
			one prod omitted or wrong: M1
(iii)	$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe	M1	not $\frac{x}{45} \times \frac{x}{44} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x}{45} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x-1}{45} = \frac{1}{15}$
	$\frac{1}{45} \times \frac{1}{44} - \frac{1}{15}$ de		$\frac{1101}{45} \times \frac{44}{45} = \frac{15}{15} \text{ of } \frac{45}{45} \times \frac{45}{45} = \frac{15}{15} \text{ of } \frac{45}{45} \times \frac{45}{45} = \frac{15}{15}$
	$x^2 - x - 132 = 0$ or $x(x - 1) = 132$	A1	oe
	(n-12)(n+11)=0		ft 3-term QE for M1
	(x-12)(x+11) = 0 or $x = 1 + \frac{1}{2} - \frac{4}{2} = \frac{4}{2} = \frac{132}{2}$	M1	condone signs interchanged
	or $x = \frac{1 \pm \sqrt{(1^2 - 4 \times (-132))}}{2}$		allow one sign error
	No. of $Y_s = 12$	A1 4	Not $x = 12$ or -11
			ans 12 from less wking, eg 12×11=132
			or T & I: full mks
			Some incorrect methods:
			$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe M1
			$x^2 + x = 132$ A0
			x = 11 M1A0
			$12 \times 11 = 132$ M1A1M1
			x = 12 and (or "or") 11 A0
			NB 12 from eg 12.3 rounded, check method
Total		9	

6(i)(a)	256	B1 1		
				(i)(b) & (ii)(abc): ISW
				ie if correct seen, ignore extras
(b)	Total unknown or totals poss diff	B1 1		pie chart shows only proportions oe
()	or Y13 may be smaller or similar			or no. of students per degree may differ
	or size of pie chart may differ			not "no. of F may be less"
				not "Y13 may be larger"
(ii)(a)	B&W does not show frequencies oe	B1 1		or B&W shows spread or shows mks or M lger
() ()	-			range
(b)				1 mk about overall standard, based on median or on F's IQR being "higher"
				1ll 1 (1 (DD)
				1 mk about spread (or range or IQR) or about skewness.
				of about skewiless.
				must be overall, not indiv mks
				must be comparison, not just figures
				must be comparison, not just rigures
				Examples:
	F generally higher or median higher			not F higher mean
	F higher on average or F better mks			
	F IQR is above M IQR	B1		
	E mara compact			not M have hiest and lowest mks
	F more compact M wide(r) range or gter IQR			not ivi have mest and lowest miks
	or gter variation or gter variance			
	or more spread or less consistent			
	M evenly spread or F skewed	B1 2	,	condone F +ve skew
	We verify spread of 1 she wed	<i>D</i> 1 2		condone 1 · ve ske v
(c)	Advantage:			not B&W shows skewness
()	B&W shows med or Qs or IQR or range			not B&W shows info at a glance
	or hiest & lowest or key values	B1		not B&W easier to compare data sets
				not B&W shows mean
				not B&W shows spread
				not B&W easier to calculate or easier to read
	Disadvantage:			
	B&W loses info'			not B&W does not give indiv (or raw) data
	B&W shows less info'			not B&W does not show mean
	B&W not show freqs			
	B&W not show mode			
	B&W: outlier can give false impression hist shows more info			not hist shows frog for analy more
	hist shows freqs or fds			not hist shows freq for each mark not hist shows all the results
	hist shows freqs of ids hist shows modal class (allow mode) hist			not hist shows total
	shows distribution better			not mist shows total
	can calc mean from hist	B1 2	,	allow adv of hist as disadv of B&W
(iii)	102 x 51 + 26 x 59	M1		or 5202 + 1534 or 6736
(111)	÷ 128	M1de ₁	,	01 3202 1334 01 0/30
	= 52.6 (3 sfs)	A1 3		
Total	52.0 (5 515)	10	,	
Total	ı	10	ļ	

			my 2
4732	Mark S	Scheme	June 20 June 20
7(i)	Geo stated 0.7 ³ x 0.3 (3 sfs)	M1 M1 A1 3	June 20. The property of implied by $0.7^r \times 0.3$ or $0.3^r \times 0.7$ Allow $0.7^4 \times 0.3$ $1-(0.3+0.3\times 0.7^++0.3\times 0.7^5)$ not $1-0.7^6$
(ii)	0.7 ⁶ alone = 0.118 (3 sfs)	M1 A1 2	$1-(0.3+0.3\times0.7++0.3\times0.7^{5}) \qquad \text{not } 1-0.7^{6}$
(iii)	0.7 ⁹ 1 – 0.7 ⁹ 0.960 (3 sfs)	M1 M1 A1 3	not 0.3×0.7^{5} allow $1 - 0.7^{10}$ or 0.972 for M1 allow 0.96 , if no incorrect wking seen $0.3 + 0.7 \times 0.3 + \dots + 0.7^{8} \times 0.3$: M2 1 term omitted or wrong or "correct" extra: M1
(iv)	Bin stated ${}^5C_2 \times 0.7^3 \times 0.3^2$ or $0.8369 - 0.5282$ = 0.3087 or 0.309 (3 sfs)	M1 M1 A1 3	or implied by table or ${}^{n}C_{r}$ or $0.7^{3} \times 0.3^{2}$ or 0.0309
Total		11	
8(i)	$\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}}$ = -0.960 (3 sfs)	M2 A1 3	$(= \frac{-11.8}{\sqrt{168 \times 0.9}})$ M1: correct subst in any correct <i>S</i> formula M2: correct substn in any correct <i>r</i> formula allow -0.96, if no incorrect wking seen
(ii)	must refer to, or imply, external constraint on x e.g x is controlled or values of x fixed or chosen allow x is fixed	B1 1	not x is not random not x affects y not x not affected by y not x goes up same amount each time not charge affects no. of vehicles not x not being measured
(iii)	$\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ = -0.0702 (3 sfs) or - ⁵⁹ / ₈₄₀ or - ^{11.8} / ₁₆₈ $y - \frac{16.4}{8} = \text{``-0.0702''}(x - \frac{88}{8})$ $y = -0.07x + 2.8 \text{ or better}$	M1 A1 M1 A1 4	ft their S_{xy} and S_{xx} incl $^{168.6}/_{1136}$ if used in (i) or -0.07 if no incorrect wking or $a = ^{16.4}/_{8} - (\text{``-0.0702''}) \times ^{88}/_{8}$ or $^{2371}/_{840}$ oe eg $y = ^{-59}/_{840}x + ^{2371}/_{840}$
(iv)(a)	"-0.07" x 20 + "2.8" = 1.4(2) million (2 sfs)	M1 A1 2	no ft
(b)	r close to -1 or corr'n is high	B1	or good corr'n or pts close to line but not if "close to -1, hence unreliable" if r low in (i), ft: "r low" or "poor corr'n" etc
	just outside given data, so reliable	B1 2	or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a)
(v)	y on x x is indep	B1 B1 2	or x controlled or y depends on x or y not indep dep on not "x on y"
Total		14	r close to -1 so makes little difference: B2
			,1

4733 Probability & Statistics 2

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Significant evidence that time is unchanged" is also A0.					
1	(i)	Biased in favour of those with strong	B2	2	"Biased", "unrepresentative", "not indept" or equiv
1	(1)	political interest	D2	_	[but <i>not</i> "not random"] stated, with sensible reason.
		political interest			[SR: partial answer, B1]
	(ii)	Obtain list of all pupils	B1		List, can be implied; number serially or randomly,
	(11)	Allocate numbers sequentially	B1		not just "number pupils"
		Choose using random numbers	B1	3	Select consistently with method of numbering,
		Choose using random numbers	Di	3	not just "select randomly"
					[SR: systematic: List B1, every n^{th} B1, random start B1]
					[SR: names in a hat: B2]
2	(i)	$\Phi\left(\frac{24-30}{12}\right) - \Phi\left(\frac{20-30}{12}\right)$	M1		Standardise one, allow $\sqrt{12}$, 12^2 , \sqrt{n}
		Φ $(12)^{-\Phi}$ (12)	A1		Both standardisations correct, allow cc here
		$=\Phi(-0.5)-\Phi(-0.833)$	M1		Correct handling of tails $[0.3085 - 0.2024]$
		=(1-0.6915)-(1-0.7976)= 0.1061	A1	4	Answer, a.r.t. 0.106, c.a.o.
	(ii)	Not symmetrical (skewed)	M1		Any comment implying not symmetric
	()	Therefore inappropriate	A1	2	Conclude "not good model" [Partial answer: B1]
3		$H_0: \mu = 28$	B2		Both hypotheses correctly stated; one error, allow
		$H_1: \mu \neq 28$			wrong or no letter, but not x or t or \bar{x} , B1
		$\sigma^2 = 37.05 \times 40/39$ [= 38]	M1		Multiply 37.05 or $\sqrt{37.05}$ by $n/(n-1)$ or $\sqrt{n/(n-1)}$
		L 3	M1		Standardise with \sqrt{n} , allow $\sqrt{\text{errors}}$, cc, +
	α	$z = \frac{26.44 - 28}{\sqrt{38/40}} = -1.601$	A1		Correct z, a.r.t -1.60 , or $p \in [0.0547, 0.0548]$
	•		B1		Explicit comparison of z with -1.645 or p with 0.05
		Compare –1.645, or 0.0547 with 0.05			
	β	Critical value $28 - z\sigma/\sqrt{n}$ [= 26.397]	M1		Allow " \pm ", $\sqrt{\text{errors}}$, cc, ignore other tail
		z = 1.645	B1		z = 1.645 in CV expression, and compare 26.44
		Compare 26.44 with 26.40	A1√		CV, $$ on their z, rounding to 3 SF correct
		Do not reject H_0 [can be implied]	M1		Needs \sqrt{n} , correct method & comparison, <i>not</i> $\mu = 26.44$
		Insufficient evidence that time taken has	A1√	8	Conclusion interpreted in context, $\sqrt{\text{ on } z}$,
		changed.			
4	(i)	$\frac{53 - 50}{\sigma / \sqrt{10}} < 2.326$	M1		Standardise with 10 or $\sqrt{10}$ and Φ^{-1}
		$\sigma/\sqrt{10}$	A1		Both sides same sign, $\sqrt{10}$, don't worry about <
		-> 4.00 A.C	B1		2.326 or 2.33 seen
		$\sigma > 4.08$ AG	A1	4	Convincingly obtain $\sigma > 4.08$ to 3 SF, one other step
		[Allow≥]			[SR: Substitution: standardise & substitute 4.08 M1;
					0.0101 A1; 4.07 or 4.075 tried, M1; full justification A1]
	(ii)	P(Type I) = 0.01 used, e.g. Geo(0.01)	M1		Not enough merely to state $p = 0.01$
		$0.99^4 \times 0.01$	M1		$p^4 \times q$
		= 0.0096	A1	3	Answer, a.r.t. 0.0096
5	(i)	$\int_{-1}^{1} \frac{3}{4} (x^2 - x^4) dx = \frac{3}{4} \left[\frac{x^3}{3} - \frac{x^5}{5} \right]_{-1}^{1} [= 1/5]$	M1		Attempt $\int_{-1}^{1} x^2 f(x) dx$
		J_{-1} ⁴ (1) $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}{1}$	A1		Correct indefinite integral
		$1/5 - 0^2$	B1		Mean 0 clearly indicated
		= 1/5	A1	1	
	(22)	10	A1	4	Answer 1/5 or a.r.t. 0.200, don't need $\mu = 0$
	(ii)		B1		Correct graph don't need f(x) as well. Don't allow if
			DI		Correct graph, don't need $f(x)$ as well. Don't allow if
					graph goes further below axis than "pips".
		(a)	M1		Don't worry too much about exact shape
		(b) Areas equal, more spread out,	M1		Mention areas or total probability
		so g _{max} lower	A1 D1don		Convincing argument, not just "flatter"
		(c) W greater	B1dep	_	W greater
		as more spread out	depB1	5	with convincing reason

-	(-)	D - (2.275)	1.11		D = (10/0) = 4 = 4 = 0 :
6	(a)	Po(2.375)	M1		Po(19/8) stated or implied
		$e^{-2.375} \left(\frac{2.375^3}{3!} + \frac{2.375^4}{4!} \right) = 0.2079 + 0.1233$	M1		One correct Poisson formula, <i>not</i> tables
		3! 4!	A1		Complete correct expression, including addition
		= 0.3310	A1	4	Answer, a.r.t. 0.331
		0.0010			[SR: Po(2) or Po(2.4) and tables, M1]
	(b)	(i) $n \text{ large OR} n > 50$	B1		Or equivalent [Allow \leq and \geq throughout]
	(0)			2	
		$p \text{ small OR} \qquad np < 5$	B1	2	Or equivalent, e.g. $np \approx npq$, or $p < 0.1$
					[Treat " $np < 5$, $npq < 5$ " as single wrong statement]
		(ii) B(108, $\frac{1}{36}$)	M1		Correct binomial distribution stated or implied
			M1		Po(np), $$ on their n, p
		≈ Po(3)	A1		Po(3)
		$1 - P(\le 3) = 1 - 0.6472$	M1		Use Po tables, "1 –", or correct formula, \pm 1 term,
		= 0.3528	A1	5	e.g. 0.1847; a.r.t. 0.353, allow from exact Binomial
7	(i)	Dramad actalog must accur	B1		"independently", in context, allow "random"
/	(i)	Dropped catches must occur		•	
		independently of one another and at	B1	2	"Constant average rate", in context
		constant average rate			["Singly" doesn't gain B1]
	(ii)	Use: "Reject H ₀ when correct"	M1		Find $P(\geq r)$ where $r > \lambda$, e.g. $P(\geq 6)$ from $Po(2)$
		Po(10)	M1		Po(10) stated or implied [can be recovered in (iii)]
art		$P(\ge 16) = 1 - P(\le 15) = 1 - 0.9513$	M1		Seek biggest prob < 0.05, e.g. 0.0835 or 0.0166,
r p					allow 0.0293 but no other LH tail
Marks can be awarded in either part		Probability 0.0487	A1		Answer in range [0.0487, 0.0488], cwd, cwo
-Ei	(iii)	$H_0: \lambda = 10 \text{ or } 2 \text{ [or } \mu$]	B2		
.⊑	(iii)		DZ		Hypotheses fully correct, allow λ or μ
eq		$H_1: \lambda > 10 \text{ or } 2 \text{ [or } \mu$]			[SR: one error, B1, but r or R or x or \bar{x} : B0]
ırd		α : $P(\ge 14) = 1 - 0.8645 = 0.1355$	A1		$p \in [0.135, 0.136]$ from Po(10)
I W		> 0.05	B1		Compare explicitly with 0.05 or 0.0487
e s		$β$: Critical region $r \ge 16$, $p = 0.0487$	A1√		$\sqrt{\text{ on answer from (ii)}}$
n		Compare $r = 14$	В1√		
ca		Do not reject H ₀ [can be implied]	M1		Method correct, $\sqrt{\text{ on } p}$, must be upper tail and " \geq "
l ks		Insufficient evidence of an increase in	A1√	10	Conclusion interpreted in context
Гал		the number of dropped catches	AIV	10	[SR: $P(\le 14) = 0.9165 < 0.95$: (B2 M1) A0 B1 M0A0;
		the number of dropped catches			
					same for P(> 14) or P(= 14)]
-	(')		D2		[SR: N(10,10): (ii) 0.05 M0. (iii) (B2) M1 A0 B1 M0A0]
8	(i)	$H_0: p = 0.4$ or $\mu = 4.8$	B2		Both fully correct, B2.
		$H_1: p > 0.4$ or $\mu > 4.8$			[SR: one error, B1, but x or R or r or \bar{x} : B0]
		B(12, 0.4)	M1		B(12, 0.4) stated or implied, e.g. 0.9972 or 0.9847
		$P(\ge 9) = 1 - 0.9847 = 0.0153$	A1		Or: CR is ≥ 9 and $p \in [0.015, 0.0153]$
		< 0.05	B1√		Explicitly compare with 0.05, or 9 with \geq 9, $$ on $<$
		Reject H_0 [can be implied]	M1		Reject H_0 , $\sqrt{\text{on probability, must be ">"}}$ "
		Significant evidence of increase in		_	
			A1√	7	Conclusion interpreted in context
		proportion of audience members who			[SR: $P(\le 9)$ or $P(= 9)$ or $P(> 9)$: (B2 M1) A0 B1 M0A0]
		know sponsor's name			[SR: N(4.8, 2.88): (B2) M1 A0 B0 M0A0]
	(ii)	N(160, 96)	B1		Normal, mean 160
			B1		Variance (or SD) 96 [96/400: B2M0]
		(x-0.5)-160 = 1.645	M1		Standardise unknown with np and \sqrt{npq} or npq , &
		$\frac{(x-0.5)-160}{\sqrt{96}} = 1.645$	A1		equate to Φ^{-1} ; $\sqrt{96}$ and signs correct, ignore cc
		• / / /	B1		RHS = 1.645
		Solve to find $x = 176.6$	M1		
		Minimum value is 177		7	Solve [implied by 177 or 176.6 or 176.1]
1		ivinimum value is 1//	A1	7	177 only, from 176.6, CWO [cc error: 6 ex 7]

June 20 Parts Cloud Com

4734 Probability & Statistics 3

1 (i)	$\frac{1}{99}(6115.04 - \frac{761.2^2}{100})$ =3.240	M1 A1	2	AEF
(ii)	$761.2/100\pm z\sqrt{(3.24/100)}$ $z = 1.96$ $(7.26,7.96)$	M1 B1 A1	3	z= 1.282, 1.645, or 1.96 Allow from σ^2 =3.21; allow 7.97 but not from wrong σ . Allow 4 or 5 SF but no more.
(iii)	None necessary, since sample size large enough for sample mean to have a normal distribution	В1	1 [6	OR:None necessary, <i>n</i> large enough for Central Limit theorem to apply
2	$(\overline{x} - 12.6) / \sqrt{0.1195/10}$ 1.383 seen Solve for variable $\overline{x} \ge 12.75$	M1 A1 B1 M1 A1	5 [5]	Any variable, correct mean, /10, ignore z All correct Allow any symbol ($<$,>,=) Allow > ; 12.7 or 12.8 No z seen
3(i)	Choice of newspaper is independent of level of income	B1	1	Or equivalent
(ii)	Use df=4 EITHER: CV 13.28, from df=4 or sig. level Largest significance level is 1% OR: UseP($\chi^2 > 12.32$) Largest significance level is 1.52%	B1 M1 B1 B2	[4]	May be implied by 13.28 seen or 0.0152 From tables Accept 0.01 Use of calculator Accept 0.0152 from df=6: CV 12.59 used; SL=5%: B0M1B1
4(i)	$\int_0^1 \frac{4}{3} x^3 dx + \int_1^2 \frac{4}{3x^3} dx$ Limits seen anywhere	M1		For both integrals OR 1 - $\int_{2}^{\infty} \frac{4}{3x^3} dx$
	$\left[\frac{x^4}{3}\right]_0^1 + \left[-\frac{2}{3x^2}\right]_1^2$ $\frac{5}{6}$	A1	3	For both OR $1 - \left[-\frac{2}{3x^2} \right]_2^{\infty}$
 (ii)	EITHER: $\int_0^1 \frac{4}{3} x^3 dx = \frac{1}{3}$ < \frac{1}{2} Median must exceed 1 OR: $m = \sqrt{(4/3)}$ > 1 AG	M1 A1 A1 M1 A1	3	Attempt to find median M0 for 1.5 ^{1/4} Accept 1.15

B1

Β1

(iii)	$\int_0^1 \frac{4}{3} x^4 dx + \int_1^\infty \frac{4}{3x^2} dx$
	$[4x^5/15] + [-4/(3x)]$ 1.6

M1 Correct form for at least one integral

В1 Both integrals correct without limits **A**1 3 AEF

(iv)
$$E(X^2) = \dots + \int_1^\infty \frac{4}{3x} dx$$

M1 For second integral

Second integral =
$$\left[\frac{4}{3} \ln x\right]_{1}^{\infty}$$

A1

This is not finite, (so variance not finite)

A1 3 AEF [12]

5 (i) Justify a relevant Poisson approximation $E(A)=75\times0.022 \ (=1.65), E(B)=90\times0.025 \ (=2.25)$ Sum of two independent Poisson variables X has a Poisson distribution Mean m = 3.9

M1 Using n>50 or n large; np<5 or p small (<0.1)

B1B1 or $np \approx npq$

A1

M1

5 Accept Po(3.9) B1

(ii) $1 - P(\le 5)$

0.1994

M1 Or From Po(m) Accept ≤ 4 ;

OR Exact 1 – sum of at least 5 correct terms

2 From calculator or tables, art 0.20 **A**1

[7]

6 (i) Use $p_s \pm zs$ z = 2.326 $s = \sqrt{(0.12 \times 0.88/50)}$ (0.013,0.227) Allow limits if penalised in Q1

B1 **A**1 Or /49

A1 4 Or (0.012,0.228) from 49

(ii)	$z(0.12\times0.88/n)^{1/2}$
	< 0.05
	Solve to obtain
	n > 228.5
	$n \approx 229 \text{ or } 230$

M1 Any z Allow = **A**1

M1 Must contain \sqrt{n} Accept = A1

5 Must be integer **A**1

2

7 (i) Each population of test scores should have normal distributions with equal variances

OR: Variances equal and normal distns

(ii) EITHER: Cannot test for normality from data OR: Sample variances are close enough to accept population variances equal

Not variances are not equal

Context

1

B1

B1

В1

(iii)	H ₀ : $\mu_B = \mu_G$, H ₁ : $\mu_B > \mu_G$ $s^2 = (23 \times 86.79 + 17 \times 93.01)/40$ =89.4335 $t = (1238.4/18 - 1526.8/24)/[s^2(18^{-1} + 24^{-1})]^{1/2}$ = 1.758 Use CV of 1.684 1.758 > 1.684 Reject H ₀ and accept there is sufficient evidence at the 5% significance level that teenage boys worry more, on average than teenage girls.	B1 M1 A1 M1 A1 B1 M1	9	For both. No other variables. Allow words Finding pooled estimate of variance May be implied by later value of t With pooled estimate of variance All correct art 1.76, or - Consistent Compare correctly with their CV (t value) Not assertive Ft on their 1.758 SR:Using s^2 = 93.01/18+86.79/24: B1M0A0M1A0A1(for 1.749) B1M1(from 1.645 or 1.684)A1 Max 6/9
			_12]	
8 (i)	$\Sigma x f/80 = 1.9$ AG $\Sigma x^2 f/80 - 1.9^2$ 1.365 or 1.382	B1 M1 A1	3	With evidence Or × 80/79
(ii)	Poisson distribution requires equal mean and variance EITHER: No, mean and variance differ significantly OR: Yes, indicated by sample statistics taking into account sampling error	B1 :	2	May be indicated
(iii)	$e^{-1.9}1.9^3/3!$ ×80	B1 B1		Or from tables
(iv)	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02 = 11.63$ CV 7.815 $11.63 > 7.815$ There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)	M1d	lep*	Any two correct All correct art 11.6 OR p=0.00875 OR 0.00875 < 0.05 Ft (ii) SR: If last cells not combined: $\chi^2 = 12.3$
(v)	E-values or probabilities would change df would increase by 1	B1 B1		M1A1A1 CV=9.448 or p = 0.0152, B1*dep the M1dep* Or other valid observation Or CV would change
]	

4735 Statistics 4

1	(i)	Use $P(A) + P(B) - P(A \cap B) \le 1$, $P(A \cap B) = 0$	B1	1	AEF
	(ii)	Use $P(A B)=P(A \cap B) / P(B)$ Use $P(A \cap B) = 0$ with argument with $x \neq 0$	M1 A1	AEF e.g	g. Inependent if $(A \cap B) = P(A)P(B) = x^2$, $P(A \cap B) = 0$, $x \neq 0$, so A and B are not indep.
	(iii)	Use $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$ $- P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$ Use $P(A \cap B) = 0$; $P(A \cap B \cap C) = 0$ $P(B \cap C) = 2x^2$; $P(C \cap A) = 2x^2$	M1 A1 A1	4 (7)	Or equivalent. Allow one sign error For both For both
		Substitute and obtain required result AG	A1	4 (7)	
2	(i)	Wilcoxon test requires a symmetric distribution not supported by the diagram	B1	1	Or equivalent
	(ii)	H ₀ : $m = 1.80$, H ₁ : $m > 1.80$ Use sign test Number exceeding $1.8 = 20$	M1 A1	B1	Needs "population median" if words
		Use B(30,0.5), P(≥20) Or P(≤10) 0.0494 Compare with 0.05 correctly 2.008	M1 A1 M1		OR: 1.645 if N(15,7.5), z=1.643, 1.816,
		Conclude there is significant evidence that the median time exceeds 1.80 sec	A1√	7 (8)	used; OR CR ($X \ge 20$) ft p or z
3	(i)	Marginal distribution of X			
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 M1 A1	3	
	(ii)	P(Y>X)=0.08+0.05+0.03+0.08+0.06+0.07 = 0.37	M1 A1	2	
	(iii)	Use $P(Y>X \cap X>0)/P(X>0)$ P(X>0)=0.73 $P(Y>X \cap X>0)=0.08+0.06+0.07$ 21/73	M1 A1 A1	4	From marginal distribution
			A1	4	AEF
	(iv)	The director cannot conclude independence from cov. So director's conclusion incorrect OR: Eg P($X=0 \cap Y=0$)=0.11, P($X=0$)P($Y=0$)=0.27× 0.29 \neq P($X=0 \cap Y=0$)	M1	2 (11)	Idea that independence implies cov = 0 but not the reverse

Variances seem not to be equal В1 4 (i)

(ii) H_0 : $m_M = m_A$, H_1 : $m_M \neq m_A$ "average"

M1

В1

Both hypotheses, AEF. Not Both found

 $R_m = 40, m(m+n+1)-R_m = 72$ W = 40**A**1 B1

A0 if no or wrong 72 Or equivalent

CR: *W* ≤ 38 40 not in CR, so do not reject H₀ M1 Insufficient evidence that median times differA1

In context. B1 if no M1 but conclusion correct 6 (7) Allow average here

 $a+b=\frac{3}{4}$ 5 (i) $M'(0)=3^3/_8$ $\frac{1}{2} + 3a + 4b = 3\frac{3}{8}$ Solve simultaneously $a = \frac{1}{8}$ AG $b = \frac{5}{8}$

B1 From M(0)=1M1 **A**1 **AEF** Elimination or substitution M1

A1 A1 6

 $M''(t) = e^{2t} + \frac{9}{8}e^{3t} + 10e^{4t}$ $M''(0) - (M'(0))^2$ $97/_8 - (3\frac{3}{8})^2$

В1 M1 A1A1

(iii) x=2, 3, 4

В1 1 (11)

6 (i) P(Y>y) = 1 - F(y) $=a^3/v^3$ $P(S > s) = P(\text{ all 3 values } > s) = (a/s)^9 \text{ AG}$ $\mathbf{f}(s) = d/ds(1 - (a/s)^9)$

M1 Allow any variables **A**1 A₁

A1

M1

(ii) M1 **A**1

= 9a/8

S not unbiased since this not equal to a $T_1 = 8S/9$

M1 B1√ Ft E(S)

 $Var(T_1) = a^2/63$, $Var T_2 = a^2/9$ (iii) M1 Correct method A1 for both

 $Var(T_1) \le Var(T_2)$, T_1 is more efficient A1√ Comparison, completion.. $\sqrt{}$ one variance correct with same dimensions

 $t_1 = 4.0, t_2 = 5.4$ (iv) From data $a \le 4.5$ and $t_2 > 4.5$

B1 Both B1B1 **3 (15) AEF**

7 (i) G(1) = 1a = 2

M1 A1

(ii) $(1+2t)/(4-t) = c (1+2t)(1-\frac{1}{4}t)^{-1}$ $= \frac{1}{4}(1+2t)(1+\frac{1}{4}t+(\frac{1}{4}t)^2+\dots)$

- $c = \frac{1}{4}$ or 4 M1
- =\frac{1}{4}(1+2t)(1+\frac{1}{4}t+(\frac{1}{4}t)\frac{1}{4}t+(\frac{1}{4}t
- **A**1 M1√ With 2 terms from previous line A1 4

(iii) $H(t) = \left(\frac{1+2t}{4-t}\right)^3$

- B1
- H'(t) = $3\left(\frac{1+2t}{4-t}\right)^2 \left[\frac{2(4-t)+1+2t}{(4-t)^2}\right]$
- M1A1

 $\mathrm{E}(Y)=\mathrm{H}'(1)$ =3

- M1 **A**1 5
- (iv) $H(1)=p_0+p_1+p_2+p_3+p_4+...=1$ H(-1) = $p_0 - p_1 + p_2 - p_3 + p_4 - \dots = \frac{1}{1/125}$ Add: $2(p_0 + p_2 + p_4 + \dots) = 1 - \frac{1}{1/25}$ $\frac{1}{2}(1 - \frac{1}{125})$ AG
- M1With sufficient detail **A**1

2 (13)

53

4736 Decision Mathematics 1

1	(i)	Biggest/largest/last number (only) (Not showing effect on a specific list)	B1	Accept bubbling to left unless inconsistent with part (ii): Smallest/first number	[1]
	(ii)	2 1 3 4 5 horizontally or vertically (may see individual comparisons/swaps) [For reference: original list was 3 2 1 5 4] 4 comparisons and 3 swaps (both correct)	M1 A1	Or bubbling to left: 1 3 2 4 5 Watch out for shuttle sort used If not stated, assume that comparisons come first	[2]
	(iii)	1 2 3 4 5 One (more pass after this)	M1 A1	FT from their first pass with their bubbling if possible Watch out for	
	(iv)	$(3000 \div 500)^2 \times 0.2$	M1	'One swap (in 2^{nd} pass)' $6^2 \times 0.2$ or $8 \times 10^{-7} \times 9 \times 10^6$	[2]
	(iv)	$(3000 \div 500) \times 0.2$ = 7.2 seconds	Al	or any equivalent calculation cao UNITS	[2]
				Total =	7

2 (i)	- Graph is not simple - Two of the vertices are joined by two arcs (if appropriate) - It has a 'loop' (if appropriate) - For a simple graph each vertex must have order 3 or less	M1 A1 B1	A graph with four vertices of orders 2, 2, 4, 4 (ignore any vertex labels) A connected graph Recognition that their graph is not simple (although it is connected). Need not use the word 'simple'.	[3]
(ii)	Graph is not connected	M1 A1 B1	Any graph with four vertices of orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph is not connected Total =	[3]

3	(i)	$ y \le x + 2 x + 2y \ge 6 $	M1 M1 M1 A1	Line $y = x + 2$ in any form Line $x + 2y = 6$ in any form Line $2x + y = 12$ in any form All inequalities correct	[4]
	(ii)	$x + 2y = 6 \text{ and } y = x + 2 \Rightarrow (\frac{2}{3}, 2\frac{2}{3})$ $y + 2x = 12 \text{ and } y = x + 2 \Rightarrow (3\frac{1}{3}, 5\frac{1}{3})$ $y + 2x = 12 \text{ and } x + 2y = 6 \Rightarrow (6, 0)$	M1 A1 A1 B1	Follow through if possible Calculating from their lines or implied from either A mark $\left(\frac{2}{3}, \frac{8}{3}\right) \qquad (art (0.7, 2.7))$ $\left(\frac{10}{3}, \frac{16}{3}\right) \qquad (art (3.3, 5.3))$ $(6, 0) cao$	[4]
	(iii)	$(\frac{2}{3}, 2\frac{2}{3}) \Rightarrow 11\frac{1}{3}$ $(3\frac{1}{3}, 5\frac{1}{3}) \Rightarrow 32\frac{2}{3}$ $(6, 0) \Rightarrow 30$ At optimum, $x = 3\frac{1}{3}$ and $y = 5\frac{1}{3}$ Maximum value = $32\frac{2}{3}$	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept $(3\frac{1}{3}, 5\frac{1}{3})$ identified (ft) $32\frac{2}{3}$ (air 32.6 to 32.7) (ft)	[3]
	(iv)	$5 \times 3 \frac{1}{3} + k \times 5 \frac{1}{3} \ge 5 \times 6 + k \times 0$ $\Rightarrow k \ge 2.5$	M1 M1 A1	$5\times3\frac{1}{3} + k\times5\frac{1}{3}$ (ft) or implied $5\times6 + k\times0$ or 30 or implied Greater than or equal to 2.5 (cao)	[3]

4	(i)	1 0 4 5	M1	Both 6 and 5 shown at B	
		A B	M1	All temporary labels correct including F and J	
		5 6 (9) (16) 7 12	A1	No extra temporary labels	
		$ \begin{array}{c cccc} 6 & & 16 & & 12 \\ \hline C & & F & H & \\ \end{array} $	В1	All permanent labels correct (may omit <i>F</i> and/or <i>J</i>) cao	
		$ \begin{array}{c ccccc} 3 & 3 & & 2 & 2 & & 6 & 10 \\ 4 & 3 & & 2 & & 10 & \\ D & E & & G \end{array} $	B1	Order of labelling correct (may omit F and/or J , may reverse F and J) cao	
		(10) (16) 16 J K	B1 B1	A - E - B - G - H - K cao 14 cao	[7]
		Route = $A - E - B - G - H - K$ Length = 14 metres			
	(ii)	Without using CJ : Route = $A - E - B - G - F - J$ Length = 21 metres	B1 B1	Follow through their (i) $A-E-B-G-F-J$ 21	[2]
	(iii)	More than 2 metres	M1 A1	2 (cao) More than, or equivalent	
		(Answer of 'more than 7 metres' or '7 metres' \Rightarrow M1, A0)		(Answer of 3 or \geq 3 \Rightarrow SC1)	[2]
				Total =	11

						_		
5	(i)		E	W		B1	AW = 3 - x	
		A	X	3 -		B1	AW = 3 - x $BW = 3 - y$	
		В	y	3 -	y	B1	CE = 4 - x - y, in any form	
		C	4 - x - y	x +	x+y-1			
						M1	An appropriate calculation for their	
		Total $cost = 3$,	. ,			table	
			+200y + 140(A1	Leading to given result	[5]
			(4-x-y) + 280(111	Beauting to given result	ردا
		=£(2090 - 20	x + 40y	(A0	J)			
	(ii)	2090 - 20x + 6	$40y \le 2150$					
		\Rightarrow -20x + 40y	$0 \le 60$			B1	Showing where the given inequality	
		$\Rightarrow -x + 2y \leq 3$,	(A0	G)		comes from	[1]
	(iii)	50(3-x) + 40(1-x)	(3-v) + 60(x+v-1)	-1)		M1	Follow through their table	121
	` '	= 210 + 10x + 10		1)		A1	Correct expression	
		So need to ma		, (A	G)		210 + 10x + 20y	[2]
	(iv)	$P \qquad x$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	_		Rows and columns may be in any	
	` '	1 -1	-2 0	0	0	1	order	
		0 -1	2 1	0	3	B1	-1 -2 in objective row	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 0	1	3	B1	Constraint rows correct	[2]
	(v)	Pivot on the 2	1 0	mn	J	B1	Correct choice of pivot from <i>y</i>	
	()	1 -2		0	3	1	column	
		0 -0.5	1 0.5	0	1.5	1	Follow through their tableau	
		0 1.5	0 -0.5	1	1.5] , , ,	and valid pivot if possible	
						M1 A1	Pivot row correct Other rows correct	
		Pivot on 1.5 i	n the x column	n		AI	Onici iows correct	
		1 0	$0 \frac{1}{3}$	$1\frac{1}{3}$	5	M1	Correct choice of pivot	
			1	$\frac{1}{3}$		1	Follow through their tableau	
		0 0			2	A1	and valid pivot if possible Correct tableau	
		0 1	$0 - \frac{1}{3}$	$\frac{2}{3}$	1	B1	Correct answer only	[6]
								[[-]
		x = 1, y = 2						
							Total =	16

6	(a)(i)	Route Inspection (problem)	B1	Or Chinese postman (problem)	[1]
	(ii)	Odd nodes are A , B , C and D	B1	Identifying odd nodes (may be implied from working)	
		$AB = 250 \qquad AC = 100 \qquad AD = 200$	M1	Pairing odd nodes (all three pairings considered)	
		$CD = \underline{200}$ $BD = \underline{250}$ $BC = \underline{350}$ 550	A1	M mark may not be implied 350 as minimum	
		Repeat AC and $BFED = 350$	B1	3350 m or 3.35 km UNITS	[4]
		Length of shortest route = 3350 metres			
	(iii)	C is an odd node, so we can end at		Working need not be seen	
		another odd node. AB = 250 $AD = 200$ $BD = 250$	M1	May be implied from answer	
		Repeat $AD = 200$	A1	3200	
		Length of route = 3200 metres	B1	B	[3]
		Route ends at B			
	(b)(i)	D-G-C-A-E-F-B-H-D	M1	Correct cycle If drawn then arcs must be directed	
				1580	
		1500 4	A1	Identifying the stall	
		1580 metres $A - C - D - G$ then method stalls	B1		[3]
	(ii)	A - C - D - O then method stans	M1	Use of Prim's algorithm to build tree	
	(11)	BF = 100	1711	(e.g. an attempt at list of arcs or order	
		FE = 50 C		of adding vertices). NOT Kruskal	
		ED = 100 $D = 100$	A1	Correct arcs chosen (listed or seen on tree)	
		DG = 80	AI	A correct tree with vertices labelled	
		EH = 110 H	B1	Order stated or clearly implied	
		DC = 200		640	
			A1 B1		[5]
		Order of adding nodes: BFEDGHC	Di		
		Total weight of tree = 640 metres			
	(iii)	Lower bound = $640 + 100 + 200 = 940$	M1	300 + weight of their tree	
		940 metres \leq shortest tour \leq 1580 metres	A1	their $940 \le \text{length} \le \text{their } 1580$ (condone use of < here)	[2]
	l			Total =	18

For reference:

4737 Decision Mathematics 2

1(a)	(i)	$ \begin{array}{c} A & & & P \\ B & & & Q \\ E & & & R \end{array} $	B1	A correct bipartite graph	
	(ii)	F G T U			[1]
	(11)	A P B Q E	B1	A second bipartite graph showing the incomplete matching correctly	
	(iii)	F G U $F-R-B-P$	B1	This path in any reasonable form	[1]
	(111)		D1	This pain in any reasonable form	
		A = T $B = P$ $E = U$ $F = R$ $G = QA = P$ $B = T$ $E = U$ $F = R$ $G = Q$	B1	This complete matching	[2]
	(iv)		B1	This complete matching	[1]
(b)	(i)	Hungarian algorithm finds the minimum cost matching, subtract from 10 to convert a maximising problem into a minimising problem.	B1	An appropriate reference to maximising/minimising	
		Column <i>X</i> is a dummy column (dummy task) to make the table square	B1	'Dummy' or 'square table' or equivalent	[2]
	(ii)	C D L S X H 1 2 4 4 10 I 2 4 7 6 10 J 4 6 5 9 10 K 3 8 7 7 10 N 3 7 7 5 10		For reference only	

	Reduce columns			
	0 0 0 0	M1	Either reducing columns or reducing rows of 5×5 matrix	
	1 2 3 2 0 3 4 1 5 0			
	2 6 3 3 0 2 5 3 1 0	A1	This reduced matrix Correct answer only	
	Rows are already reduced		,	
	Augment by 1 0 0 0 0 1	M1	A reasonable attempt to augment	
	0 1 2 1 0	1411	A reasonable attempt to augment	
	2 3 0 4 0			
	1 5 2 2 0 1 4 2 0 0	A1	This final matrix Correct answer only	
	H = D Harry is the director			
	I = C Iannos operates the camera $J = L$ Jack is in charge of lighting	B1	This matching, indicated in any	
	N = S Nadia is in charge of sound (and Kerry is not used)		way	
	Total score =			
	(10-2) + (10-2) + (10-5) + (10-5) + (10-10) = 26	M1	A reasonable attempt,	
	20	A1	$ \begin{array}{c} 14 \text{ or } 24 \Rightarrow M1, A0 \\ 26 \end{array} $	[7]
(iii)	C D L S I 2 4 7 6			
	J 4 6 5 9 K 3 8 7 7	B1	This 4×4 matrix (need not have row	
	N 3 7 7 5		and column labels)	
	Reduce columns		Or reduce rows 0 2 5 4	
	0 0 2 1 2 2 0 4	M1	0 2 1 5	
	1 4 2 2 1 3 2 0	M1	0 5 4 4 0 4 4 2	
	Then reduce rows		Then reduce columns	
	0 0 2 1		0 0 4 2	
	2 2 0 4 0 3 1 1	A1	0 0 0 3 0 3	
	1 3 2 0		0 2 3 0	
	I = D $J = L$ $K = C$ $N = S$	B1	This matching indicated in any way Correct answer only	[4]
	1	•		l = 18

2	(i)	-2	B1	Accept 'loses 2' or equivalent	[1]
	(ii)	Column W is dominated by column Y .	B1	Stating <i>Y</i> (but not <i>W</i> dominates <i>Y</i>)	
		If Rowena plays <i>P</i> , Collette loses 2 with <i>W</i> but 1 with <i>Y</i> . If Rowena plays <i>Q</i> , Collette loses 1 with <i>W</i> but gains 1 with <i>Y</i> .	В1	Correct comparisons explained, 2 > 1 and 1 > -1, or equivalent	[2]
	(:::)	Collete			
	(iii)	Rowena	M1 A1 A1	Determining row minima and column maxima, or equivalent. Must be correct, including <i>W</i> if shown. May not be implied from answers. P stated	[3]
				Y stated	
	(iv)	-3p + 2(1-p) = 2-5p Y gives $2p-1$	B1	2-5 <i>p</i> in simplified form	
		Z gives $7p-4$	В1	Both 2 <i>p</i> -1 and 7 <i>p</i> -4 in any form	[2]
	(v)	$7p-4=2-5p \Rightarrow p=0.5$	B1 M1 A1	Graph must be on graph paper Their lines drawn correctly on a reasonable scale Solving the correct pair of equations (only) or using graph correctly	
		E = -0.5	B1	0.5, correct answer only -0.5, correct answer only	[4]
	(vi)	Add 4 throughout matrix to make all values non-negative On this augmented matrix, if Collette plays Y Rowena expects $4p_1 + 3p_2 + 6p_3$, and if Collette plays Z Rowena expects $7p_1 + 0p_2 + 2p_3$	B1 B1	'Add 4', or new matrix written out or equivalent Relating to columns Y and Z respectively. Note: $4p_1 + 3p_2 + 6p_3$ and $7p_1 + 2p_3$ are given in question	
		We are solving a maximin problem. m is less than or equal to each of these values since we need find the maximum value of the worst possible augmented expected pay-off for each value of p	B1	Or shown on a diagram. For each value of <i>p</i> we look at the minimum output.	[3]
	(vii)	We use an inequality instead of an equality because this is needed to enable the Simplex algorithm to pivot on a row that will increase the value of M	B1	So that we can use the Simplex algorithm.	[1]
	(viii)	$p_3 = \frac{3}{7}$	B1	$\frac{3}{7}$	
		$E = \frac{6}{7}$	B1	$\frac{6}{7}$	[2]
				Tota	l = 18

4737

ANSWERED ON INSERT

3	(i)	$\{SA, B, D, G\}, \{C, E, F, T\}$ (given) AC = 4, BC = 2, BE = 1, DE = 2, GE = 5, GT = 6	M1	Identifying the correct arcs, on a diagram or list or by using 4, 2, 1,	
		4+2+1+2+5+6		2, 5, 6	
		4+2+1+2+5+6 = 20 litres per minute	A1	20 from a correct calculation	[2]
	(ii)	At most 2 litres per minute can enter G so the arc	B1	Maximum into $G = 2$	
	(***)	GE can carry at most 2 litres per minute	D.1		[1]
	(iii)	At most 8 litres per minute can flow into E	B1	8	
		Flow shown on diagram on insert Flow in = flow out for each vertex except S , T	M1	A flow of the rate they have claimed through <i>E</i> (irrespective of whether it is feasible) (directions may not be changed, assume a blank means 0)	
		A feasible flow of 8 litres per minute through E	A1	No pipe capacities exceeded and flow through $E = 8$	[3]
	(iv)	Arrows labelled on diagram		Assume blanks mean 0	
		SA = 0 $AC = 0$ $CF = 0$ $FT = 1AS = 4$ $CA = 4$ $FC = 4$ $TF = 4$	M1	Arrows on arcs on one of the routes SACFT, SBET, SDGT labelled	
		AB = 3 $BC = 2$ $CE = 3$ $EF = 4BA = 0$ $CB = 0$ $EC = 0$ $FE = 0$		correctly, or all labels on the route reversed	
		SB = 4 $BE = 0$ $ET = 5BS = 1$ $EB = 1$ $TE = 1$	M1	Arrows on all three routes labelled correctly or all reversed	
		BD = 3 $DE = 2$ $EG = 0DB = 0$ $ED = 0$ $GE = 5$	A1	All arrows labelled correctly, not reversed	[2]
		SD = 0 $DG = 0$ $GT = 4DS = 2$ $GD = 2$ $TG = 2$			[3]
	(v)	Amount that flows along <i>SBDET</i> = 2 litres per min	B1	2 For arrows on route <i>SBDET</i> :	
		$SB = 4 \ 2$ $BD = 3 \ 1$ $DE = 2 \ 0$ $ET = 5 \ 3$ $BS = 1 \ 3$ $DB = 0 \ 2$ $ED = 0 \ 2$ $TE = 1 \ 3$	M1 A1	Labels updated consistently These all labelled correctly (and not reversed)	[3]
	(vi)	Route used = SBCET	B1	SBCET listed	
		$SB = 4 \ 2 \ 0$ $BC = 2 \ 0$ $CE = 3 \ 1$ $ET = 5 \ 3$ $BS = 1 \ 3 \ 5$ $CB = 0 \ 2$ $EC = 0 \ 2$ $TE = 1 \ 3$	M1 A1	For arrows on route SBCET: Labels updated consistently These all labelled correctly (and not reversed)	[3]
\vdash	(vii)	5	B1	Follow through their (v) and (vi) if	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		possible Assume blanks mean 0	[1]
	(viii)	Eg cut through arcs SA, SB, SD	M1	A suitable cut chosen, indicated in	
		Or arcs AC , BC , BE , DE , DG	A1	any way Indicated by listing arcs cut	[21
			AI		$ \begin{array}{c} [2]\\ 1 = 18 \end{array} $

PART (a) ANSWERED ON INSERT

4	(2)				ON INSER		I		
4	(a)	Stage	State	Action	Working	Suboptimal			
1		-	^			maximum			
		_	0	0	5	5	B1	5, 4, 4 identified as suboptimal	
		2	1	0	4	4	יני	maxima for stage 2	
			2	0	4	4	M1	Transferring suboptimal maxima	
			0	0	3+ 5 = 8	8		from stage 2 to stage 1 correctly	
				1	4+4=8	8	A 1	Correct additions or totals seen	
		1	1	1	2+ 4 = 6			for all rows in stage 1	
				2	4+4=8	8	B1	8, 8, 10 identified as suboptimal	
			2	1	6+4=10	10		maxima for stage 1 (cao)	
				2	5+4=9		M1	Transferring suboptimal maxima	
				0	4+8=12			from stage 1 to stage 0 correctly	
		0	0	1	5+ 8 = 13	13	A1	Correct additions or totals seen	
				2	2+10=12		D1	for all rows in stage 0	
		Lanath	flong	oat math —	- 12		B1	Correct route or in reverse	101
				est path =	2;2) – (3;0)		B1	Correct route or in reverse	[8]
\vdash	(b)(i)	Koute –	(0,0) –		D(3)			(including (0; 0) and (3; 0)) Condone directions missing	$\vdash \vdash \vdash$
	(D)(1)		•		<i>D</i> (3) ■			Must be activity on arc	
							M1	A reasonable attempt, arcs should	
		A(4)		E(4)	J(5)	_	1,11	be labelled	
		\mathcal{I}_B	(5)	F(2)		(4)			
		\longleftrightarrow	•	\longleftarrow	\rightarrow		A1	Any correct form	
		×	$G(\cdot$	4) 🗸	_			Condone extra dummies	
		C(2)	H	(6)	L(4)			provided precedences are not	
				/' \				violated, accept networks with	
			•	-	-•			multiple end vertices	
				I(5)				Arc weights may be shown but	[2]
								are not necessary	
	(ii)					1		Follow through their network if	
			,	4 5	<u>[7]8</u>			possible	
								Values at vertices may be	
								recorded using any consistent notation	
				515	819	12112	M1	notation	
		0 0	•	 	1 819	13 13	1411	Forward pass with no more than	
			\				A1	one independent error	
								Forward pass correct	
							M1	·	
				2 3	9 9			Backward pass with no more than	
					لئات			one independent error (follow	
							A1	through their 13)	
			Minim	num proje	ect completio	on time = 13 days	B1	Backward pass correct	
					Critical	activities B, G, L	B1	13 stated, cao	[6]
\vdash	(***)							B, G, L correct answer only	$\vdash \vdash \vdash$
	(iii)		lacksquare	ī			D1	Not follow through	
				F			B1	A directed dummy from end of <i>G</i> to start of <i>K</i>	
			•	?			B1	A directed dummy from end of G	
			ď	` \\`\`	K		וע	to start of L	[2]
			/	H				Condone extra dummies provided	[2]
			< <	_ [precedences are not violated	
			Ι		, "			Watch out for K following I	
									l = 18
ь								Tota	_ 10

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2008 Examination Series

Unit Threshold Marks

7892		Maximum Mark	Α	В	С	D	Е	U
4721	Raw	72	63	55	47	39	32	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	29	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	56	49	43	37	31	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	41	35	29	0
	UMS	100	80	70	60	50	40	0
4720	Raw	72	61	53	45	37	29	0
4728	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	47	38	29	20	0
	UMS	100	80	70	60	50	40	0
4720	Raw	72	56	47	38	29	21	0
4730	UMS	100	80	70	60	50	40	0
4731	Raw	72	59	50	42	34	26	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	60	52	45	38	31	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	28	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	26	0
4/30	UMS	100	80	70	60	50	40	0
1727	Raw	72	61	54	47	40	34	0
4737	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	33.3	50.4	65.4	77.0	86.6	100	14679
3891	100	100	100	100	100	100	1
3892	57.2	76.7	88.2	94.1	97.6	100	1647
7890	45.4	67.3	82.4	92.1	97.8	100	10512
7891	33.3	66.7	100	100	100	100	6
7892	56.5	77.9	90.0	95.4	98.2	100	1660

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums results.html

Statistics are correct at the time of publication.

www.mymathscloud.com

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

