Mathematics

Advanced GCE A2 7890-2
Advanced Subsidiary GCE AS 3890-2

Mark Schemes for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.
© OCR 2008
Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/ContentPage
4721 Core Mathematics 1 1
4722 Core Mathematics 2 6
4723 Core Mathematics 3 10
4724 Core Mathematics 4 13
4725 Further Pure Mathematics 1 17
4726 Further Pure Mathematics 2 21
4727 Further Pure Mathematics 3 24
4728 Mechanics 1 31
4729 Mechanics 2 33
4730 Mechanics 3 35
4731 Mechanics 4 38
4732 Probability \& Statistics 1 42
4733 Probability \& Statistics 2 46
4734 Probability \& Statistics 3 487
4735 Statistics 4 510
4736 Decision Mathematics 1 543
4737 Decision Mathematics 2 598
Grade Thresholds 643

4721 Core Mathematics 1

 given as final answers, award B1 5

5
M1 Attempt to differentiate

$$
\text { A1 } k x^{-\frac{1}{2}}
$$

$$
\begin{array}{ll}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{-\frac{1}{2}}+1 \\
& =4\left(\frac{1}{\sqrt{9}}\right)+1 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{7}{3}
\end{array}
$$

M1 Correct substitution of $x=9$ into their
A1 $\frac{7}{3}$ only
5
$\begin{aligned} 6 \text { (i) } & (x-5)(x+2)(x+5) \\ & =\left(x^{2}-3 x-10\right)(x+5) \\ & =x^{3}+2 x^{2}-25 x-50\end{aligned}$
B1 $\quad x^{2}-3 x-10$ or $x^{2}+7 x+10$ or $x^{2}-25$
seen
M1 Attempt to multiply a quadratic by a linear factor
A1
3
(ii)

B1 +ve cubic with 3 roots (not 3 line segments)
B1 $\sqrt{ }(0,-50)$ labelled or indicated on y-axis
B1 $(-5,0),(-2,0),(5,0)$ labelled or indicated on x-axis and no other x - intercepts

9 (i) $\begin{aligned} & (x-2)^{2}+(y-1)^{2}=100 \\ & x^{2}+y^{2}-4 x-2 y-95=0 \end{aligned}$	B1 B1 B1 3	$\begin{aligned} & (x-2)^{2} \text { and }(y-1)^{2} \text { seen } \\ & (x \pm 2)^{2}+(y \pm 1)^{2}=100 \end{aligned}$ correct form
$\begin{aligned} & (\text { (ii) } \\ & (k-2)^{2}+(k-1)^{2}=100 \\ & k=1+\sqrt{91} \end{aligned}$	$\begin{array}{r}\text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \hline 3 \\ \hline\end{array}$	$x=5$ substituted into their equation correct, simplified quadratic in k (or y) obtained cao
$\text { (iii) } \begin{aligned} & \text { distance from }(-3,9) \text { to }(2,1) \\ & =\sqrt{(2--3)^{2}+(1-9)^{2}} \\ & =\sqrt{25+64} \\ & =\sqrt{89} \\ & \\ & \sqrt{89}<10 \text { so point is inside } \end{aligned}$	$\begin{array}{r}\text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \hline 3 \\ \hline\end{array}$	Uses $\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$ compares their distance with 10 and makes consistent conclusion
$\text { (iv) } \begin{aligned} \text { gradient of radius } & =\frac{9-1}{8-2} \\ & =\frac{4}{3} \end{aligned}$	M1 A1	$\text { uses } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ oe
$\begin{aligned} & \text { gradient of tangent }=-\frac{3}{4} \\ & y-9=-\frac{3}{4}(x-8) \end{aligned}$	B1 $\sqrt{ }$ M1	oe correct equation of straight line through $(8,9)$, any non-zero gradient
$\begin{aligned} & y-9=-\frac{3}{4} x+6 \\ & y=-\frac{3}{4} x+15 \end{aligned}$	A1 $\square 5$	oe 3 term equation

$$
10 \text { (i) } \quad \begin{array}{ll}
& 2\left(x^{2}-3 x\right)+11 \\
= & 2\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+11 \\
= & 2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2}
\end{array}
$$

$$
\text { B1 } \quad p=2
$$

$$
\text { B1 } \quad q=-\frac{3}{2}
$$

$$
\text { M1 } \quad r=11-2 q^{2} \text { or } \frac{11}{2}-q^{2}
$$

$$
\text { A1 } \quad r=\frac{13}{2}
$$

4
(ii) $\left(\frac{3}{2}, \frac{13}{2}\right)$

B1 $\sqrt{ }$

B1
2

M1 uses $b^{2}-4 a c$
A1
2
B1 cao
M1* substitute for x / y or attempt to get an equation in 1 variable only
A1 obtain correct 3 term quadratic
M1dep correct method to solve 3 term quadratic
A1

A1
SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1

4722 Core Mathematics 2

1

$$
(2-3 x)^{6}=2^{6}+6 \cdot 2^{5} \cdot(-3 x)+15 \cdot 2^{4} \cdot(-3 x)^{2}
$$

M1 Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
)3x

$$
=64-576 x+2160 x^{2}
$$

OR
A1 Obtain $64-576 x$
M1 Attempt third term - binomial coefficient and powers of 2 and $(-) 3 x$
A1 Obtain 2160 x^{2}

M1 Attempt expansion involving all 6 brackets
A1 Obtain 64
A1 Obtain - $576 x$
A1 Obtain 2160 x^{2}

SR if the expansion is attempted in descending order, and the required terms are never seen, then B1 B1 B1 for $4860 x^{4},-2916 x^{5}, 729 x^{6}$

5 (i) $\int x \mathrm{~d} y=\int\left((y-3)^{2}-2\right) \mathrm{d} y$

$$
\begin{gathered}
=\int\left(y^{2}-6 y+7\right) \mathrm{d} y \quad \text { A.G. } \\
3+\sqrt{(2+2)}=5, \quad 3+\sqrt{(14+2)}=7
\end{gathered}
$$

(ii) $\left[\frac{1}{3} y^{3}-3 y^{2}+7 y\right]_{5}^{7}$
term

$$
\begin{aligned}
& =\left({ }^{343} / 3-147+49\right)-\left({ }^{125} / 3-75+35\right) \\
& =16^{1} / 3-1^{2} / 3 \\
& =14^{2 / 3}
\end{aligned}
$$

B1 Show $x=y^{2}-6 y+7$ convincingly
B1 State or imply that required area $=\int x \mathrm{~d} y$
B1 Use $x=2,14$ to show new limits of $y=5,7$
3
M1 Integration attempt, with at least one
correct
A1 All three terms correct
M1 Attempt F(7) - F(5)
A1 Obtain $14 \frac{2}{3}$, or exact equiv

6 (i)	$A B C=360-(150+110)=100^{\circ}$ A.G.	$\begin{array}{r} \text { B1 } \\ 1 \\ \hline \end{array}$	Show convincingly that angle $A B C$ is 100°
(ii)	$\begin{aligned} C A^{2} & =15^{2}+27^{2}-2 \times 15 \times 27 \times \cos 100^{\circ} \\ & =1094.655 \ldots \\ C A & =33.1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline 2 \end{aligned}$	Attempt use of correct cosine rule Obtain 33.1 km
(iii)	$\frac{\sin C}{15}=\frac{\sin 100}{33.1} \quad \text { or } \quad \frac{\sin A}{27}=\frac{\sin 100}{33.1}$ $C=26.5^{\circ} \quad A=53.5^{\circ}$ Hence bearing is 263°	M1 A1 $\sqrt{ }$ A1 A1 $\sqrt{ }$ 4	Attempt use of sine rule to find angle C or A (or equiv using cosine rule) Correct unsimplified eqn, following their $C A$ Obtain $C=26.5^{\circ}$ or $A=53.5^{\circ}$ (allow 53.4 ${ }^{\circ}$) Obtain 263 or 264 (or 290° - their angle C / $210+$ their angle A)
7 (a)	$\begin{aligned} & \int\left(x^{5}-x^{4}+5 x^{3}\right) \mathrm{d} x \\ = & \frac{1}{6} x^{6}-\frac{1}{5} x^{5}+\frac{5}{4} x^{4}(+c) \end{aligned}$	M1 A1 A1 B1 4	Expand brackets and attempt integration, or other valid integration attempt Obtain at least one correct term Obtain a fully correct expression For $+c$, and no \int or $\mathrm{d} x$ (can be given in (b)(i) if not given here)
(b)	(i) $-6 x^{-3}(+c)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline 2 \\ & \hline \end{aligned}$	Obtain integral of the form $k x^{-3}$ Obtain $-6 x^{-3}(+c)$
	(ii) $\begin{aligned} & {\left[-6 x^{-3}\right]_{2}^{\infty}} \\ & =3 / 4 \end{aligned}$	$\begin{aligned} & \text { B1* } \\ & \text { B1d* } \\ & \hline 2 \end{aligned}$	State or imply that $\mathrm{F}(\infty)=0\left(\right.$ for $\left.k x^{n}, n-1\right)$ Obtain $3 / 4$ (or equiv)

8 (i)	M1 A1 B1 3	Attempt sketch of exponential graph ($1^{\text {st }}$ quad) - if seen in $2^{\text {nd }}$ quad must be approx correct Correct graph in both quadrants State or imply (0,2) only
$\begin{aligned} & \text { (ii) } \\ & 8^{x}=2 \times 3^{x} \\ & \log _{2} 8^{x}=\log _{2}\left(2 \times 3^{x}\right) \\ & x \log _{2} 8=\log _{2} 2+x \log _{2} 3 \\ & 3 x=1+x \log _{2} 3 \\ & x\left(3-\log _{2} 3\right)=1, \text { hence } x=\frac{1}{3-\log _{2} 3} \quad \text { A.G. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Form equation in x and take logs (to any consistent base, or no base) - could use $\log _{8}$ Use $\log a^{b}=b \log a$ Use $\log a b=\log a+\log b$,or equiv with $\log a / b$ Use $\log _{2} 8=3$ Show given answer correctly
OR $\quad 8^{x}=2 \times 3^{x}$ $\begin{aligned} & 2^{3 x}=2 \times 3^{x} \\ & 2^{(3 x-1)}=3^{x} \\ & \log _{2} 2^{(3 x-1)}=\log _{2} 3^{x} \\ & (3 x-1) \log _{2} 2=x \log _{2} 3 \\ & x\left(3-\log _{2} 3\right)=1, \text { hence } x=\frac{1}{3-\log _{2} 3} \end{aligned}$ A.G.	M1 M1 M1 M1 A1 5	Use $8^{x}=2^{3 x}$ Attempt to rearrange equation to $2^{k}=3^{x}$ Take logs (to any base) Use $\log a^{b}=b \log a$ Show given answer correctly
$\begin{aligned} & 9 \text { (a) (i) } 2 \sin x \cdot \sin x-5=\cos x \\ & 2 \sin ^{2} x-5 \cos x=\cos ^{2} x \\ & 2-2 \cos ^{2} x-5 \cos x=\cos ^{2} x \\ & 3 \cos ^{2} x+5 \cos x-2=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \\ & \hline \end{aligned}$	Use $\tan x \equiv \frac{\sin x}{\cos x}$ Use $\sin ^{2} x \equiv 1-\cos ^{2} x$ Show given equation convincingly
$\text { (ii) } \begin{aligned} & (3 \cos x-1)(\cos x+2)=0 \\ & \\ & \cos x=1 / 3 \\ & x=1.23 \mathrm{rad} \\ & x=5.05 \mathrm{rad} \end{aligned}$	M1 M1 A1 A1 $\sqrt{ }$ 4	Attempt to solve quadratic in $\cos x$ Attempt to find x from root(s) of quadratic Obtain 1.23 rad or 70.5° Obtain 5.05 rad or 289° (or $2 \pi / 360^{\circ}$ - their solution) SR: B1 B1 for answer(s) only
(b) $0.5 \times \mathrm{x} 0.25 \mathrm{x}\{\cos 0+2(\cos 0.25+\cos 0.5+\cos 0.75)+\cos 1\}$	M1 M1 M1 A1 4	Attempt y-coords for at least 4 of the correct 5 x-coords Use correct trapezium rule, any h, for their y values to find area between $x=0$ and $x=1$ Correct h (soi) for their y values Obtain 0.837

10 (i)	$\begin{aligned} u_{15} & =2+14 \times 0.5 \\ & =9 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline 2 \end{aligned}$	Attempt use of $a+(n-1) d$ Obtain 9 km
(ii)	$\begin{aligned} & u_{20}=2 \times 1.1^{19}=12.2 \\ & u_{19}=2 \times 1.1^{18}=11.1 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	State, or imply, $r=1.1$ Attempt u_{20}, using ar ${ }^{n-1}$ Obtain $u_{20}=12.2$, and obtain $u_{19}=11.1$
OR		$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \mathbf{3} \\ & \hline \end{aligned}$	State, or imply, $r=1.1$ Attempt to solve $a r^{n-1}=12$ Obtain $n=20$ (allow $n \geq 20$)
(iii)	$\frac{2\left(1.1^{n}-1\right)}{(1.1-1)}>200$	B1	State or imply $S_{N}=\frac{2\left(1.1^{n}-1\right)}{(1.1-1)}$
	$1.1^{n}>11$	M1	Link (any sign) their attempt at S_{N} (of a GP) to 200 and attempt to solve
	$n>\frac{\log 11}{\log 1.1}$	A1	Obtain 26, or 25.2 or better
	$n>25.2$ ie Day 26	A1 4	Conclude $n=26$ only, or equiv eg Day 26
(iv)	$\begin{aligned} & \text { swum }=2 \times 30=60 \mathrm{~km} \\ & \text { run } \\ & =1 / 2 \times 30 \times(4+29 \times 0.5) \\ & \\ & =277.5 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	Obtain 60 km , or $2 \times 30 \mathrm{~km}$ Attempt sum of AP, $d=0.5, a=2, n=30$
	$\text { cycle }=\frac{2\left(1.1^{30}-1\right)}{(1.1-1)}$	M1	Attempt sum of GP, $r=1.1, a=2, n=30$
	$\begin{gathered} =329.0 \mathrm{~km} \\ \text { total }=666 \mathrm{~km} \end{gathered}$	A1 4	Obtain 666 or 667 km

4723 Core Mathematics 3

8 (i) Show at least correct $\cos \theta \cos 60+\sin \theta \sin 60$ or
$\cos \theta \cos 60-\sin \theta \sin 60$
Attempt expansion of both with exact numerical values attempted
Obtain $\frac{1}{2} \sqrt{3} \sin \theta+\frac{5}{2} \cos \theta$
(ii) Attempt correct process for finding R

Attempt recognisable process for finding α
Obtain $\sqrt{7} \sin (\theta+70.9)$
(iii) Attempt correct process to find any value of $\theta+$ their α Obtain any correct value for $\theta+70.9$
Attempt correct process to find $\theta+$ their α in 3rd quadrant Obtain 131
[SC for solutions with no working shown:

B1

M1 and with $\cos 60 \neq \sin 60$
A1 or exact equiv
3
M1 whether exact or approx
M1 allowing \sin / cos muddles
A1 allow 2.65 for R; allow 70.9 ± 0.1 for α
3
M1
A1 $-158,-22,202,338, \ldots$
M1 or several values including this
A1 or greater accuracy and no other
Correct answer only B4; 131 with other answers B2]

9 (i) Attempt use of quotient rule
Obtain $\frac{75-15 x^{2}}{\left(x^{2}+5\right)^{2}}$
Equate attempt at first derivative to zero and rearrange to solvable form
Obtain $x=\sqrt{5}$ or 2.24
Recognise range as values less than y-coord of st pt
Obtain $0 \leq y \leq \frac{3}{2} \sqrt{5}$
*M1 or equiv; allow u / v muddles
A1 or (unsimplified) equiv; this M1A1 available at any stage of question

M1 $\quad \operatorname{dep}$ *M
A1 or greater accuracy
M1 allowing $<$ here
A1 any notation; with \leq now; any exact equiv

B1 $\sqrt{ }$ following their x-coord of st pt; condone answer $x \geq \sqrt{5}$ but not inequality with k
*M1 and dependent on first \mathbf{M} in part (i)
A1 or equiv involving 3 non-zero terms
M1 dep *M

Obtain -375 or equiv and conclude appropriately

4724 Core Mathematics 4

1 (a) $2 x^{2}-7 x-4=(2 x+1)(x-4)$ or

$$
3 x^{2}+x-2=(3 x-2)(x+1)
$$

B1
$\frac{2 x+1}{3 x-2}$ as final answer; this answer only
B1 Do not ISW

		2	
	(b) For correct leading term x in quotient	B1	Identity method
	For evidence of correct division process	M1	M1: $x^{3}+2 x^{2}-6 x-5=Q\left(x^{2}+4 x+1\right)+R$
	Quotient $=x-2$	A1	M1: $Q=a x+b$ or $x+b, R=c x+d \& \geq 2$ ops
			[N.B. If $Q=x+b$, this $\Rightarrow 1$ of the 2 ops]
	Remainder $=x-3$	$\mathbf{A 1}$	A2: $a=1, b=-2, c=1, d=-3$ SR: $\underline{\mathrm{B}} 1$ for two
2	Parts with correct split of $u=\ln x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=x^{4}$	*M1 obtaining result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$	
	$\frac{x^{5}}{5} \ln x-\int \frac{x^{5}}{5} \cdot \frac{1}{x}(\mathrm{~d} x)$	A1	
	$\frac{x^{5}}{5} \ln x-\frac{x^{5}}{25}$	A1	
	Correct method with the limits	dep*M1	11 Decimals acceptable here
	$\frac{4 \mathrm{e}^{5}}{25}+\frac{1}{25} \quad \text { ISW } \quad\left(\text { Not }^{\prime}+\mathrm{c}^{\prime}\right)$	A1	Accept equiv fracts; like terms amalgamated
		5	
	(i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} y\right)=x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y$ or $\frac{\mathrm{d}}{\mathrm{d} x}\left(x y^{2}\right)=2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}$	*B1	
	Attempt to solve their differentiated equation for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	dep*M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-2 x y}{x^{2}-2 x y}$ only	A1	WWW AG Must have intermediate line \&...
			...could imply " $=0$ " on $1{ }^{\text {st }}$ line
		3	
(ii)(a)Attempt to solve only $y^{2}-2 x y=0 \&$ derive $y=2 x$Clear indication why $y=0$ is not acceptable		$\begin{array}{r} \text { B1 } \\ \text { B1 } \\ \hline 2 \\ \hline \end{array}$	AG Any effort at solving $x^{2}-2 x y=0 \rightarrow \mathrm{~B} 0$ Substituting $y=2 x \rightarrow \mathrm{~B} 0, \mathrm{~B} 0$
	(b) Attempt to solve $y=2 x$ simult with $x^{2} y-x y^{2}=2$	M1	AEF
	Produce $-2 x^{3}=2$ or $y^{3}=-8$		
	$(-1,-2)$ or $x=-1, y=-2$ only	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	
		3	

 Check other formats, e.g. $t a+(1-t) b$
(ii) State/imply that their \mathbf{r}
and their $-2 \mathbf{i}+\mathbf{j}+\mathbf{k}$ are perpendicular
Consider scalar product $=0$
Obtain $t=-\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$
Subst their t into their equation of $A B$
Obtain $\frac{1}{6}(16 \mathbf{i}+13 \mathbf{j}+19 \mathbf{k}) \quad$ AEF
*M1 N.B.This *M1 is dep on M1 being earned in (i) dep*M1

A1
M1
A1 Accept decimals if clear

5

5 (i) $(1-x)^{\frac{1}{2}}=1-\frac{1}{2} x-\frac{1}{8} x^{2}$ ignoring x^{3} etc
$(1+x)^{-\frac{1}{2}}=1-\frac{1}{2} x+\frac{3}{8} x^{2}$ ignoring x^{3} etc
Product $=1-x+\frac{1}{2} x^{2}$ ignoring x^{3} etc

B2 SR Allow B1 for $1-\frac{1}{2} x+k x^{2}, k \neq-\frac{1}{8}$ or 0
B2 SR Allow B1 for $1-\frac{1}{2} x+k x^{2}, k \neq \frac{3}{8}$ or 0
B1 AG; with (at least) 1 intermediate step (cf x^{2})
(ii) $\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen

B1
$\frac{37}{49}$ or $1-\frac{2}{7}+\frac{1}{2}\left(\frac{2}{7}\right)^{2}$ seen
B1
$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$
B1 AG

6 (i) Produce at least 2 of the 3 relevant equations in t and s
Solve for t and s
M1 $\quad 1+2 t=12+s, 3 t=-4 s,-5+4 t=5-2 s$
$(t, s)=(4,-3)$ AEF
M1
Subst $(4,-3)$ into suitable equation(s) \& show consistency dep*A1 Either into " 3 rd" eqn or into all 3 coordinates.
N.B. Intersection coords not asked for
.. 4
(ii) Method for finding magnitude of any vector

Method for finding scalar product of any 2 vectors
Using $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ AEF for the correct 2 vectors
137 (136.8359) or 43.2(43.164...)
*M1 Expect $\sqrt{29}$ and $\sqrt{21}$
*M1 Expect -18
dep*M1 Should be $-\frac{18}{\sqrt{29} \sqrt{21}}$
A1 $2.39(2.388236 .$.$) or 0.753(0.75335 \ldots)$ rads

7 (i) Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$

Obtain $-\frac{\cos x}{\sin ^{2} x}$ or $-(\sin x)^{-2} \cos x$
Show manipulation to $-\operatorname{cosec} x \cot x$ (or vice-versa)
(ii) Separate variables, $\int(-) \frac{1}{\sin x \tan x} \mathrm{~d} x=\int \cot t \mathrm{~d} t$

M1

A1

A1 WWW AG with ≥ 1 line intermed working 3
M1 or $\int \frac{1}{\sin x \tan x} \mathrm{~d} x=\int(-) \cot t \mathrm{~d} t$

Style: For the M1 to be awarded, $\mathrm{d} x$ and $\mathrm{d} t$ must appear on correct sides or there must be \int sign on both sides
$\int-\operatorname{cosec} x \cot x \mathrm{~d} x=\operatorname{cosec} x \quad(+\mathrm{c})$
A1 or $\int \operatorname{cosec} x \cot x \mathrm{~d} x=-\operatorname{cosec} x$
$\int \cot t \mathrm{~d} t=\ln \sin t$ or $\ln |\sin t| \quad \quad(+\mathrm{c})$
B1 or $\int-\cot t \mathrm{~d} t=-\ln \sin t$ or $-\ln |\sin t|$
Subst $(t, x)=\left(\frac{1}{2} \pi, \frac{1}{6} \pi\right)$ into their equation containing ' c '
M1 and attempt to find ' c '
$\operatorname{cosec} x=\ln \sin t+2$ or $\ln |\sin t|+2$
A1 WWW ISW; $\operatorname{cosec} \frac{\pi}{6}$ to be changed to 2

9 (i) $\begin{aligned} A: \theta & =\frac{1}{2} \pi \quad\left(\operatorname{accept} 90^{\circ}\right) \\ B \cdot \theta & =2 \pi \quad\left(\text { accept } 360^{\circ}\right)\end{aligned}$
B1
$B: \theta=2 \pi \quad\left(\right.$ accept $\left.360^{\circ}\right)$
B2 SR If B0 awarded for point B, allow B1 SR for any angle s.t. $\sin \theta=0$
3
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\frac{\mathrm{~d} x}{\mathrm{~d} \theta}}$

M1 or $\frac{\mathrm{d} y}{\mathrm{~d} \theta} \cdot \frac{\mathrm{~d} \theta}{\mathrm{~d} x}$ Must be used, not just quoted
$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2+2 \cos 2 \theta$
B1
$2+2 \cos 2 \theta=4 \cos ^{2} \theta$ with ≥ 1 line intermed work
*B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \cos \theta}{2+2 \cos 2 \theta} \quad$ s.o.i.
$=\sec \theta$
A1 This \& previous line are interchangeable
dep*A1 WWW AG
5 51
$(x=)-\frac{2}{3} \pi-\frac{\sqrt{3}}{2}$
$(y=)-2 \sqrt{3}$

A1 'Exact' form required
A1 'Exact' form required

4725 Further Pure Mathematics 1

8	$\alpha+\beta=-k$		State or use correct value
	$\alpha \beta=2 k$	B1	State or use correct value
		M1	Attempt to express sum of new roots in terms of $\alpha+\beta, \quad \alpha \beta$
	$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$	A1	Obtain correct expression
	$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{1}{2}(k-4)$	A1	Obtain correct answer a.e.f.
	$\alpha^{\prime} \beta^{\prime}=1$	B1	Correct product of new roots seen
	$x^{2}-\frac{1}{2}(k-4) x+1=0$	$\begin{aligned} & \text { B1ft } \\ & 7 \end{aligned}$	Obtain correct answer, must be an eqn.
		M1	Alternative for last 5 marks Obtain expression for $u=\frac{\alpha}{\beta}$ in terms of k and α or k and β
		A1 A1 M1 A1	Obtain a correct expression rearrange to get α in terms of u Substitute into given equation Obtain correct answer
9 (i)		M1	Attempt to equate real and imaginary parts of $(x+\mathrm{i} y)^{2}$ and $5+12 \mathrm{i}$
	$x^{2}-y^{2}=5$ and $x y=6$	A1	Obtain both results
	$\pm(3+2 \mathrm{i})$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	Eliminate to obtain a quadratic in x^{2} or y^{2} Solve a 3 term quadratic \& obtain x or y Obtain correct answers as complex nos.
(ii)	5-12i	$\begin{aligned} & \text { B1B1 } \\ & 2 \\ & \hline 2 \end{aligned}$	Correct real and imaginary parts
(iii)		M1	Attempt to solve a quadratic equation
	$\begin{aligned} & x^{2}=5 \pm 12 \mathrm{i} \\ & x= \pm(3 \pm 2 \mathrm{i}) \end{aligned}$	A1 A1A1 4	Obtain correct answers Each pair of correct answers a.e.f.

10 (i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline 2 \\ & \hline \end{aligned}$	Find value of $\operatorname{det} \mathbf{A B}$ Correct value 2 seen
(ii)	$(\mathbf{A B})^{-1}=\frac{1}{2}\left(\begin{array}{ccc}0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6-3 a & a-6\end{array}\right)$	M1	Show correct process for adjoint entries
		A1	Obtain at least 4 correct entries in adjoint
		B1	Divide by their determinant
		A1	Obtain completely correct answer
		4	
(iii) EITHER		M1	State or imply $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ Obtain $\mathbf{B}^{-1}=(\mathbf{A B})^{-1} \times \mathbf{A}$
		M1	Correct multiplication process seen
		A1	Obtain three correct elements
$\mathbf{B}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2\end{array}\right)$		A1	All elements correct
OR		5	
		M1	Attempt to find elements of B
		A1	All correct
		M1	Correct process for \mathbf{B}^{-1}
		A1	3 elements correct
		A1	All elements correct

4726 Further Pure Mathematics 2

1 Write as $\frac{A}{x-2 a}+\frac{B x+C}{x^{2}+a^{2}}$
Get $2 a x=A\left(x^{2}+a^{2}\right)+(B x+C)(x-2 a)$
Choose values of x and/or equate coeff.
Get $A=4 / 5, B=-4 / 5, C=2 / 5 a$

M1 Accept $C=0$

A1 $\sqrt{ }$ Follow-on for $C=0$
M1 Must lead to at least one of their A, B, C
A1 For two correct from correct working only
A1 For third correct
5

2
B1 Get (4,0), (3,0), (-2,0) only
B1 Get $(0, \sqrt{5})$ as "maximum"

B1 Meets x-axis at 90° at all crossing points
B1 Use $-2 \leq x \leq 3$ and $x \geq 4$ only
B1 Symmetry in $\mathrm{O} x$

3	Quote/derive $\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{~d} t$ Replace all x and $\mathrm{d} x$ from their expressions Tidy to $2 /\left(3 t^{2}+1\right)$ Get $k \tan ^{-1}(A t)$ Get $k=2 / 3 \sqrt{3}, A=\sqrt{ } 3$ Use limits correctly to $2 / 9 \sqrt{ } 3 \pi$	B1 M1 A1 M1 A1 A1 A1 6	Not $\mathrm{d} x=\mathrm{d} t$; ignore limits Not $a /\left(3 t^{2}+1\right)$ Allow $A=1$ if from $p /\left(t^{2}+1\right)$ only Allow $k=a / \sqrt{ } 3$ from line 3; AEEF AEEF
4 (i)		B1	Correct $y=x^{2}$
		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline 3 \end{aligned}$	Correct shape/asymptote Crossing (0,1)
(ii)	Define sech $x=2 /\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ Equate their expression to x^{2} and attempt to simplify Clearly get A.G.	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \\ & \hline \end{aligned}$	AEEF
(iii)	Cobweb Values > and then < root	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline 2 \end{aligned}$	Only from cobweb

8 (i)Attempt to solve $r=0$ Get $\alpha=1 / 4 \pi$
(ii) (a) Get $1-\sin ((2 k+1) \pi-2 \theta)$ Expand as $\sin (A+B)$ Use k as integer so $\sin (2 k+1) \pi=0$,
And $\cos (2 k+1) \pi=-1$

4727 Further Pure Mathematics 3

1 (a)(i)	e, r^{3}, r^{6}, r^{9}	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	For stating e, r^{m} (any $m . .2$), and 2 other different elements in terms of e and r For all elements correct
(ii)	r generates G	B1	For this or any statement equivalent to: all elements of G are included in a group with e and r $O R$ order of $r>$ order of all possible proper subgroups
(b)	$m, n, p, m n, n p, p m$	B1	For any 3 orders correct
		$\begin{gathered} \text { B1 } \quad \mathbf{2} \\ \boxed{5} \end{gathered}$	For all 6 correct and no extras (Ignore 1 and mnp)
2	METHOD 1		
	$[1,3,2] \times[1,2,-1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n}=k[-7,3,-1]$ OR $7 x-3 y+z=c(=17)$	A1	For correct vector $O R$ LHS of equation
	$\theta=\sin ^{-1} \frac{\|[1,4,-1] \cdot[-7,3,-1]\|}{\sqrt{1^{2}+4^{2}+1^{2}} \sqrt{7^{2}+3^{2}+1^{2}}}$	M1 $\sqrt{ }$ M1* M1	For using correct vectors for line and plane f.t. from normal For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta=\sin ^{-1} \frac{6}{\sqrt{18} \sqrt{59}}=10.6^{\circ}$	A1 $\sqrt{ }$ (*dep)	For scalar product. f.t. from their numerator
	(10.609... $\left.{ }^{\circ}, 0.18517 \ldots\right)$	A1 7	For correct angle

METHOD 2

$$
\begin{aligned}
& {[1,3,2] \times[1,2,-1]} \\
& \mathbf{n}=k[-7,3,-1] \text { OR } 7 x-3 y+z=c \\
& 7 x-3 y+z=17 \\
& d=\frac{|21-12+2-17|}{\sqrt{7^{2}+3^{2}+1^{2}}}=\frac{6}{\sqrt{59}} \\
& \theta=\sin ^{-1} \frac{\frac{6}{\sqrt{59}}}{\sqrt{1^{2}+4^{2}+1^{2}}}=10.6^{\circ}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { M1 } & \text { For attempt to find normal vector, e.g. by finding } \\
\text { vector nroduct of correct vectors or Cartesian ean }
\end{array}
$$

A1
vector product of correct vectors, or Cartesian equation

$$
\text { M1 } \sqrt{ } \quad \text { For attempting to find RHS of equation }
$$

$$
\text { f.t. from } \mathbf{n} \text { or LHS of equation }
$$

M1 For using distance formula from a point on the line, e.g.
(10.609..., 0.18517...)

M1 For using trigonometry
A1 For correct angle

3 (i) $\frac{\mathrm{d} z}{\mathrm{~d} x}=1+\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d} z}{\mathrm{~d} x}-1=\frac{z+3}{z-1} \Rightarrow \frac{\mathrm{~d} z}{\mathrm{~d} x}=\frac{2 z+2}{z-1}=\frac{2(z+1)}{z-1}$
(ii) $\int \frac{z-1}{z+1} \mathrm{~d} z=2 \int \mathrm{~d} x$

$$
\begin{align*}
& \Rightarrow \int 1-\frac{2}{z+1} \mathrm{~d} z \text { OR } \int 1-\frac{2}{u} \mathrm{~d} u=2 x(+c) \tag{M1}\\
& \Rightarrow \\
& z-2 \ln (z+1) \text { OR } z+1-2 \ln (z+1) \\
& \Rightarrow-2 \ln (x+y+1)=x-y+c
\end{align*}
$$

For differentiating substitution
(seen or implied)
For correct equation in z AEF
3 For correct simplification to AG

B1

A1 4 For correct general solution AEF

$$
z-2 \ln (z+1) \text { OR } z+1-2 \ln (z+1) \quad \text { A1 } \quad \text { For correct integration of LHS as } \mathrm{f}(z)
$$

$$
\begin{align*}
& 4 \text { (i) } \cos ^{5} \theta=\left(\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2}\right)^{5} \\
& \cos ^{5} \theta=\frac{1}{32}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{5} \tag{M1}\\
& \text { B1 For } \cos \theta=\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2} \text { seen or implied } \\
& z \text { may be used for } \mathrm{e}^{\mathrm{i} \theta} \text { throughout } \\
& \text { For expanding }\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{5} \text {. At least } 3 \text { terms and } \\
& 2 \text { binomial coefficients required } O R \text { reasonable attempt } \\
& \text { at expansion in stages } \\
& \cos ^{5} \theta=\frac{1}{32}\left(\mathrm{e}^{5 \mathrm{i} \theta}+\mathrm{e}^{-5 \mathrm{i} \theta}+5\left(\mathrm{e}^{3 \mathrm{i} \theta}+\mathrm{e}^{-3 \mathrm{i} \theta}\right)+10\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)\right) \\
& \cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta) \\
& \text { A1 For correct binomial expansion } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \text { M1 For obtaining at least one of the values of } \cos \theta \text { from } \\
& \cos \theta=k \cos ^{5} \theta \text { OR from } 1=k \cos ^{4} \theta \\
& \Rightarrow \theta=\frac{1}{2} \pi, \frac{1}{3} \pi, \frac{2}{3} \pi \\
& \text { For grouping terms and using multiple angles } \\
& \text { 5. For answer obtained correctly AG } \\
& \text { For stating correct equation of degree } 5 \\
& \text { OR } 1=16 \cos ^{4} \theta \text { AEF } \\
& \Rightarrow \cos \theta=0, \quad \cos \theta= \pm \frac{1}{2} \quad \text { M } \\
& \text { A1 A1 for any two correct values of } \theta \\
& \text { A1 } 4 \text { A1 for the } 3 r d \text { value and no more in } 0, \theta, \pi \\
& \text { Ignore values outside } 0 \text {, } \theta \text {, } \pi
\end{align*}
$$

5 (i) METHOD 1
Lines meet where

$$
\begin{aligned}
& (x=) \quad k+2 \lambda=k+\mu \\
& (y=)-1-5 \lambda=-4-4 \mu \\
& (z=) \quad 1-3 \lambda=-2 \mu \\
& \Rightarrow \quad \lambda=-1, \quad \mu=-2
\end{aligned}
$$

METHOD 2

$d=\frac{|[0,3,1] \cdot[2,-5,-3] \times[1,-4,-2]|}{|\mathbf{b} \times \mathbf{c}|}$

$$
\begin{equation*}
d=c[0,3,1] \cdot[-2,1,-3]=0 \tag{B1}
\end{equation*}
$$

$$
\Rightarrow \text { lines intersect }
$$

Lines meet where

(ii) METHOD 1
$\mathbf{n}=[2,-5,-3] \times[1,-4,-2]$
$\mathbf{n}=c[-2,1,-3]$
$(1,-1,1)$ OR $(1,-4,0)$ OR $(-1,4,4)$
M1
METHOD 3
e.g. $x-k=\frac{2(y+1)}{-5}=\frac{y+4}{-4}$

$$
\Rightarrow 2 x-y+3 z=6
$$

For using vector equation of plane ($O R[1,-4,0]$ for

$$
\begin{align*}
& \mathbf{r}=[1,-1,1]+\lambda[2,-5,-3]+\mu[1,-4,-2] \\
& x=1+2 \lambda+\mu \\
& y=-1-5 \lambda-4 \mu \\
& z=1-3 \lambda-2 \mu \\
& \Rightarrow 2 x-y+3 z=6
\end{align*}
$$

A1 For writing 3 linear equations

M1 \quad For eliminating λ and μ
A1 a)

M1 For attempting to solve any 2 equations
A1 \quad For correct values of λ and μ
For attempting a check in 3rd equation
$O R$ verifying point of intersection is on both lines
A1 6 For correct point of intersection (allow vector)
SR For finding $\lambda O R \mu$ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1
For using parametric form to find where lines meet
For at least 2 correct equations

M1 For finding vector product of 2 directions
A1 For correct normal
SR Following Method 2 for (i), award M1 A1 $\sqrt{ }$ for \mathbf{n}, f.t. from their \mathbf{n}

A1 4 For correct equation of plane AEF cartesian

For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division by $|\mathbf{b} \times \mathbf{c}|$ is not essential)
and showing $d=0$ correctly

For using parametric form to find where lines meet
For at least 2 correct equations

For attempting to solve any 2 equations
For correct value of λ OR μ
For correct point of intersection (allow vector)

M1 For solving one pair of simultaneous equations
A1 For correct value of x, y or z
M1 For solving for the third variable
A1 \quad For correct values of 2 of x, y and z

A1 For correct point of intersection (allow vector)

For substituting a point in LHS

METHOD 2

6 (i) When a, b have opposite signs, $a\|b\|= \pm a b, b\|a\|=\mp b a \Rightarrow a\|b\| \neq b\|a\|$	M1 A1 2	For considering sign of $a\|b\|$ OR $b\|a\|$ in general or in a specific case For showing that $a\|b\| \neq b\|a\|$ Note that $\|x\|=\sqrt{x^{2}}$ may be used
(ii) $\quad(a \circ b) \circ c=(a\|b\|) \circ c=a\|b\|\|c\|$ OR $a\|b c\|$	M1	For using 3 distinct elements and simplifying $(a \circ b) \circ c$ OR $a \circ(b \circ c)$
$a \circ(b \circ c)=a \circ(b\|c\|)=a\|b\| c\|=a\| b\| \| c \mid$ OR $a\|b c\|$	A1 M1 A1 4	For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer \qquad
(iii)	B1*	For stating $e= \pm 1$ OR no identity
EITHER $a \circ e=a\|e\|=a \Rightarrow e= \pm 1$	M1	For attempting algebraic justification of +1 and -1 for e
$\begin{aligned} & \text { OR } e \circ a=e\|a\|=a \\ & \Rightarrow e=1 \text { for } a>0, e=-1 \text { for } a<0 \end{aligned}$	A1	For deducing no (unique) identity
Not a group	B1 (*dep) 4	For stating not a group
	10	

$\begin{array}{ll} 8 \text { (i) } & m^{2}+1=0 \Rightarrow m= \pm \mathrm{i} \\ & \Rightarrow \mathrm{C} . \mathrm{F} . \\ & (y=) C \mathrm{e}^{\mathrm{i} x}+D \mathrm{e}^{-\mathrm{i} x}=A \cos x+B \sin x \end{array}$	$\begin{array}{ll}\text { M1 } \\ \\ \text { A1 } & 2\end{array}$	For stating and attempting to solve correct auxiliary equation For correct C.F. (must be in trig form) SR If some or all of the working is omitted, award full credit for correct answer
(ii)(a) $y=p(\ln \sin x) \sin x+q x \cos x$	M1	For attempting to differentiate P.I. (product rule needed at least once)
$\frac{\mathrm{d} y}{\mathrm{~d} x}=p \frac{\cos x}{\sin x} \sin x+p(\ln \sin x) \cos x+q \cos x-q x \sin x$	A1	For correct (unsimplified) result AEF
	A1	For correct (unsimplified) result AEF
$-p \sin x+\frac{p \cos ^{2} x}{\sin x}-2 q \sin x \equiv \frac{1}{\sin x}$	M1	For substituting their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and y into D.E.
	M1	For using $\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow p-2(p+q) \sin ^{2} x \equiv 1$	A1 6	For simplifying to AG (\equiv may be $=$)
(b)	M1	For attempting to find p and q by equating coefficients of constant and $\sin ^{2} x$ $A N D / O R$ giving value(s) to x (allow any value for x, including 0)
$p=1, q=-1$	A1 2	For both values correct
(iii) G.S. $y=A \cos x+B \sin x+(\ln \sin x) \sin x-x \cos x$	B1 $\sqrt{ }$	For correct G.S. f.t. from their C.F. and P.I. with 2 arbitrary constants in C.F. (allow given form of P.I. if p and q have not been found)
$\operatorname{cosec} x$ undefined at $x=0, \pi, 2 \pi$	M1	For considering domain of $\operatorname{cosec} x$ OR $\sin x \neq 0$
OR $\sin x>0$ in $\ln \sin x$		$O R \ln \sin x$ term
$\Rightarrow 0<x<\pi$	A1 3	For stating correct range CAO SR Award B1 for correct answer with justification omitted or incorrect

4728 Mechanics 1

(i)	$900 \mathrm{a}=600-240$		M1
	$\mathrm{a}=0.4 \mathrm{~ms}^{-2}$	N2L with difference of 2 forces, accept 360	
		A1	
(ii)	$9=5+0.4 \mathrm{t}$	$[2]$	
	$\mathrm{t}=10 \mathrm{~s}$	M1	$\mathrm{v}=\mathrm{u}+0.4 \mathrm{t}$ or $\mathrm{v}=\mathrm{u}+(\mathrm{cv} 0.4) \mathrm{t}$
	$9^{2}=5^{2}+2 \mathrm{x} 0.4 \mathrm{~s}$	A1	
	$\mathrm{s}=70 \mathrm{~m}$	M1	or $\mathrm{s}=(\mathrm{u}+\mathrm{v}) \mathrm{t} / 2$ or $\mathrm{s}=\mathrm{ut}+0.5 \mathrm{xcv}(0.4) \mathrm{t}^{2}$
		A1	

2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction
	Uses Pythagoras $\mathrm{R}^{2}=$	D*M1	Uses cosine rule $R^{2}=$
	$(14 \sin 30)^{2}+$	A1	$14^{2}+12^{2}$ -
	$\begin{aligned} & (12+14 \cos 30)^{2} \\ & \left\{\text { or } \mathrm{R}^{2}=(12 \sin 30)^{2}+(14+12 \cos 30)^{2}\right\} \end{aligned}$	A1	$2 \times 14 \times 12 \cos 150$
	$\begin{equation*} \mathrm{R}=25.1 \tag{AG} \end{equation*}$	$\begin{aligned} & \mathrm{A} 1 \\ & {[5]} \end{aligned}$	$\begin{aligned} & \text { cso (Treat } R^{2}=14^{2}+12^{2}+2 \times 14 \times 12 \cos 30 \\ & \quad \text { as correct) } \end{aligned}$
(ii)	Trig to find angle in a valid triangle	M1	Angle should be relevant
	$\begin{aligned} & \tan B=7 / 24.1, \sin B=7 / 25.1, \cos B=24.1 / 25 . \\ & \mathrm{B}=016,(0) 16.1^{\circ} \text { or }(0) 16.2^{\circ} \end{aligned}$	A1	$\sin B / 14=\sin 150 / 25.1$. Others possible. Cosine rule may give (0)16.4, award A1
	$\mathrm{B}=016$, (0)16.1 or (0)16.2	A1 [3]	Cosine rule may give (0)16.4, award A1

4(i)		M1	Difference of 2 horizontal components, both <15
	$\mathrm{F}=15 \sin 50-15 \sin 30=3.99 \mathrm{~N}$	A1	Not 4 or 4.0
	Left	B1	Accept reference to 30 degree string
		[3]	May be given in ii if not attempted in i
(ii)		M1	Equating 4 vertical forces/components
	$\mathrm{R}=\mathrm{f}(30,15 \cos 50,15 \cos 30)$	A1	30 g is acceptable
	$\mathrm{R}=30-15 \cos 50-15 \cos 30$	A1	$=7.36(78 .$.$) , treat 30 \mathrm{~g}$ as a misread
	$\mu=3.99 / 7.36$ (78)	M1	Using $\mathrm{F}=\mu \mathrm{R}$, with $\operatorname{cv}(3.99)$ and $\operatorname{cv}(7.36$ (78..))
	$\mu=0.541$ or 0.542 or 0.543	A1 $[5]$	Accept 0.54 from correct work, e.g. 4/7.4

5(i)	2400x5-3600x 3	B1	Award if g included
	$2400 \mathrm{v}+3600 \mathrm{v}$	B1	Award if g included
	$2400 \times 5-3600 \times 3=2400 \mathrm{v}+3600 \mathrm{v}$	M1	Equating momentums (award if g included)
	$\mathrm{v}=0.2 \mathrm{~ms}^{-1}$	A1	Not given if g included or if negative.
	B	B1	
		[5]	
(ii)(a)	+/-(-2400v + 3600v)	B1	No marks in(ii) if g included
	$2400 \times 5-3600 \times 3=-2400 v+3600 \mathrm{v}$	M1	Equating momentums if "after" signs differ
	$\mathrm{v}=1 \mathrm{~ms}^{-1}$	A1	Do not accept if - sign "lost"
(b)	$\mathrm{I}=2400 \times(5+/-1)$ or $3600 \times(3+/-1)$	M1	Product of either mass and velocity change
	$\mathrm{I}=14400 \mathrm{kgms}^{-1}$	A1 [5]	Accept -14400

6(i)	$\begin{aligned} & x=0.01 t^{4}-0.16 t^{3}+0.72 t^{2} . \\ & \mathrm{v}=\mathrm{dx} / \mathrm{dt} \end{aligned}$		M1	
	$\mathrm{v}=0.04 t^{3}-0.48 t^{2}+1.44 t$.		A1	$\text { or } \mathrm{v}=4\left(0.01 t^{3}\right)-3\left(0.16 t^{2}\right)+2(0.72 t)$
	$\mathrm{v}(2)=1.28 \mathrm{~ms}^{-1}$	AG	A1	Evidence of evaluation needed
			[3]	
(ii)	$\mathrm{a}=\mathrm{dv} / \mathrm{dt}$		M1	Uses differentiation
	$\mathrm{a}=0.12 t^{2}-0.96 t+1.44$		A1	or $\mathrm{a}=3\left(0.04 t^{2}\right)-2(0.48 t)+1.44$
	$t^{2}-8 t+12=0$	AG	$\begin{aligned} & \mathrm{A} 1 \\ & {[3]} \end{aligned}$	Simplifies $0.12 t^{2}-0.96 t+1.44=0$, (or verifies the roots of QE make acceleration zero)
(iii)	$(\mathrm{t}-2)(\mathrm{t}-6)=0$		M1	Solves quadratic (may be done in ii if used to find $\mathrm{v}(6)$)
	$t=2$		A1	Or Factorises v into 3 linear factors M1
	$\mathrm{t}=6$		A1	$v=0.04 t(t-6)^{2} \quad \mathrm{~A} 1 \quad$ Identifies $t=6 \quad \mathrm{~A} 1$
	$\mathrm{v}(6)=0 \mathrm{~ms}^{-1}$		B1	Evidence of evaluation needed
			[4]	
(iv)			B1	Starts at origin
			B1	Rises to single max, continues through single min
			B1	Minimum on t axis, non-linear graph
	Away from A		B1	
			[4]	
(v)	$\begin{aligned} & \mathrm{AB}=0.01 \times 6^{4}-0.16 \times 6^{3}+0.72 \times 6^{2} \\ & \mathrm{AB}=4.32 \mathrm{~m} \end{aligned}$		M1 A1 [2]	Or integration of $v(t)$, with limits 0,6 or substitution, using $\mathrm{cv}(6)$ from iii

7(i)	($\mathrm{R}=00.2 \times 9.8 \cos 45$	M1	Not F $=0.2 \times 9.8 \cos 45$ or $0.2 \times 9.8 \sin 45$ unless followed
	$\mathrm{F}=1 \mathrm{xR}=1 \mathrm{x} .2 \mathrm{x} 9.8 \cos 45=1.386 \mathrm{~N} \quad \mathrm{AG}$	A1	by (eg) $\mathrm{Fr}=1 \mathrm{xF}=1.386$ when M1A1
		[2]	
(ii)	Any 1 application of N2L // to plane with correct mass and number of forces	M1	Must use component of weight
	$0.4 \mathrm{a}=0.2 \mathrm{~g} \sin 45+0.2 \mathrm{~g} \sin 45-1.38$ (592..)	A1	
	$\mathrm{a}=3.465 \mathrm{~ms}^{-2} \quad \mathrm{AG}$	A1	
	$0.2 \mathrm{a}=0.2 \mathrm{~g} \sin 45-\mathrm{T}$ or		Accept with 3.465 (or close) instead of a
	$0.2 \mathrm{a}=\mathrm{T}+[0.2 \mathrm{~g} \sin 45-1.38(592 . .)]$	M1	Accept omission of [term] for M1
	$\mathrm{T}=0.693 \mathrm{~N}$	A1	Accept 0.69
		[5]	
	OR		
	Any 1 application of N2L // to plane with correct mass and number of forces		Must use component of weight
	$\begin{array}{lc} 0.2 \mathrm{a}=0.2 \mathrm{~g} \sin 45-\mathrm{T} & \text { or } \\ 0.2 \mathrm{a}=\mathrm{T}+[0.2 \mathrm{~g} \sin 45-1.38(592 . .)] \end{array}$	M1 A1	Either correct Both correct. Accept omission of [term] for A1 only
	Eliminates a or T	M1	
	$\mathrm{a}=3.465 \mathrm{~ms}^{-2} \quad \mathrm{AG}$	A1	
	$\mathrm{T}=0.693 \mathrm{~N}$	A1	
(iii)	$\mathrm{v}^{2}=2 \times 3.465 \times 0.5$	M1	Using $v^{2}=0^{2}+2 \mathrm{xcv}(3.465) \mathrm{s}$
	$\mathrm{v}=1.86 \mathrm{~ms}^{-1}$	A1	
		[2]	
(iv)	For Q $(0.2) \mathrm{a}=(0.2) \mathrm{g} \sin 45-(1)(0.2) \mathrm{g} \cos 45 .$	M1	Attempting equation to find a for Q
	$\begin{equation*} a=0 \tag{AG} \end{equation*}$	A1	Accept from 0.2gsin $45-1.386$
	$\mathrm{T}=(3 / 1.86)=1.6(12)$	B1	Accept 2 sf
	For P		
	$\mathrm{a}=9.8 \sin 45$	B1	$\mathrm{a}=6.93$
	$2.5=1.86(14 .) \mathrm{t}+.0.5 \mathrm{x}(9.8 \sin 45) \mathrm{t}^{2}$	M1	Using $2.5=\mathrm{cv}(1.86) \mathrm{t}+0.5 \mathrm{cv}(6.93) \mathrm{t}^{2}$ [not 9.8 or 3.465]
	$\mathrm{t}=0.6(223)$	A1	Accept 1sf
	time difference 1.612-0.622 $=0.99(0) \mathrm{s}$	A1	Accept art 0.99 from correct work
		[7]	

4729 Mechanics 2

$\mathbf{1}$	$200 \cos 35^{\circ}$	B1	
	$200 \cos 35^{\circ} \mathrm{xd=5000}$ $\mathrm{~d}=30.5 \mathrm{~m}$	M1	

$\mathbf{2}$	$0.03 \mathrm{R}=1 / 2 \mathrm{x} 0.009\left(250^{2}-150^{2}\right)$	M 1	$150^{2}=250^{2}+2 \mathrm{a} \times 0.03$		
	0.03 R	B 1	$\mathrm{a}= \pm 2 \times 10^{6} / 3$ or $\pm 666,667$	(A1)	
	either K.E.	B1	$\mathrm{F}=0.009 \mathrm{a}$	(M1)	
	$\mathrm{R}=6000 \mathrm{~N}$	A1 f $\mathbf{4}$	\boldsymbol{f} unit errors		$\mathbf{4}$

3 (i)	$\mathrm{D}=12000 / 20$	B1	
	$12000 / 20=\mathrm{k} \mathrm{x} 20+600 \times 9.8 \times 0.1$	M1	
	$\mathrm{k}=0.6$	A1 3	AG
(ii)	$16000 / \mathrm{v}=0.6 \mathrm{v}+600 \times 9.8 \times 0.1$	M1	
	$0.6 \mathrm{v}^{2}+588 \mathrm{v}-16000=0$	M1	attempt to solve quad. (3 terms)
	$\mathrm{v}=26.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1 3	
(iii)	$16000 / 32-0.6 \times 32=600 \mathrm{a}$	M1	
		A1	
	$\mathrm{a}=0.801 \mathrm{~m} \mathrm{~s}^{-2}$	A1 3	0.80 or 0.8 9

4 (i)	$0=35 \sin \theta \mathrm{xt}-4.9 \mathrm{t}^{2}$	M1	$\mathrm{R}=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}$ only ok if proved
	$\mathrm{t}=35 \sin \theta / 4.9 \quad 50 \sin \theta / 7$	A1	or $70 \sin \theta / \mathrm{g}$ aef
	$\mathrm{R}=35 \cos \theta \mathrm{xt}$ aef	B1	their t
	$\mathrm{R}=35^{2} \sin \theta \cdot \cos \theta / 4.9$	M1	eliminate t
	$\mathrm{R}=125 \sin 2 \theta$	$\text { A1 } 5$	AG
(ii)	$\begin{aligned} & 110=125 \sin 2 \theta \\ & \theta=30.8^{\circ} \text { or } 59.2^{\circ} \\ & t=3.66 \mathrm{~s} \text { or } 6.13 \mathrm{~s} \end{aligned}$	M1 A1+1 A1+1 5	

6 (i)	$\mathrm{T} \cos 60^{\circ}=\mathrm{Scos} 60^{\circ}+4.9$	M1	Resolving vertically nb for M1:(must be components - all 4 cases)Res. Horiz. mr ω^{2} ok if $\omega \neq 3$If equal tensions $2 \mathrm{~T}=45 / 4 \mathrm{M} 1$ only	
		A1		
	$\mathrm{T} \sin 60^{\circ}+\mathrm{S} \sin 60^{\circ}=0.5 \times 3^{2} / 0.4$	M1		
		A1		
	$(\mathrm{S}+9.8) \sin 60^{\circ}+\mathrm{S} \sin 60^{\circ}=45 / 4$	M1		
	$\mathrm{S}=1.60 \mathrm{~N}$	A1		
	$\mathrm{T}=11.4 \mathrm{~N}$	A1 7		
(ii)	$\mathrm{T} \cos 60^{\circ}=4.9$	M1	Resolving vertically (component)	
	$\mathrm{T}=9.8$	A1		
	$\mathrm{T} \sin 60^{\circ}=0.5 \times 0.4 \omega^{2}$	M1	Resolving horiz. (component)	
		A1		
	$\omega=6.51 \mathrm{rad} \mathrm{s}^{-1}$	A1 5	or 6.5	12

4730 Mechanics 3

$\mathbf{1}$	(i) $\quad \mathrm{T}=(1.35 \mathrm{mg})(3-1.8) \div 1.8$ $[0.9 \mathrm{mg}=\mathrm{ma}]$	B1 M1	For using $\mathrm{T}=\mathrm{ma}$
	Acceleration in $8.82 \mathrm{~ms}^{-2}$	A1	3

4 (i) $[\mathrm{mgsin} \alpha-0.2 \mathrm{mv}=\mathrm{ma}]$ $\begin{aligned} & 5 \frac{d v}{d t}=28-v \\ & {\left[\int \frac{5}{28-v} d v=\int d t\right]} \end{aligned}$ (C) $-5 \ln (28-\mathrm{v})=\mathrm{t}$ $\begin{aligned} & \ln [(28-v) / 28]=-t / 5 \\ & {\left[28-v=28 \mathrm{e}^{-t / 5}\right]} \\ & \mathrm{v}=28\left(1-\mathrm{e}^{-t / 5}\right) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$		For using Newton's second law AG For separating variables and integrating For using $\mathrm{v}=0$ when $\mathrm{t}=0$ ft for $\ln [(28-\mathrm{v}) / 28]=\mathrm{t} /$ A from $\mathrm{C}+\mathrm{Aln}(28-\mathrm{v})=\mathrm{t}$ previously For expressing v in terms of t ft for $\mathrm{v}=28\left(1-\mathrm{e}^{\mathrm{t} / \mathrm{A}}\right)$ from $\ln [(28-\mathrm{v}) / 28]=\mathrm{t} / \mathrm{A}$ previously
(ii) $\left[\mathrm{a}=28 \mathrm{e}^{-2} / 5\right]$ Acceleration is $0.758 \mathrm{~ms}^{-2}$	M1 A1ft	2	For using $\mathrm{a}=(28-\mathrm{v}(\mathrm{t})) / 5$ or $\mathrm{a}=$ $\mathrm{d}\left(28-28 \mathrm{e}^{-t / 5}\right) \mathrm{dt}$ and substituting $\mathrm{t}=10$. ft from incorrect v in the form $a+b e^{c t}(b \neq 0)$; Accept 5.6/e ${ }^{2}$

6	(i)			For applying Newton's second law
	$[0.36-0.144 \mathrm{x}=0.1 \mathrm{a}]$	M1		
	$\ddot{x}=3.6-1.44 x$	A1		
	$\ddot{y}=-1.44 y \rightarrow$ SHM \quad or			
	$d^{2}(x-2.5) / d t^{2}=-1.44(x-2.5) \rightarrow$ SHM	B1		
		M1		For using $T=2 \pi / n$
	Of period 5.24 s	A1	5	AG
	(ii) Amplitude is 0.5 m	B1		For using $\mathrm{v}^{2}=\mathrm{n}^{2}\left(\mathrm{a}^{2}-\mathrm{y}^{2}\right)$
	$0.48^{2}=1.2^{2}\left(0.5^{2}-y^{2}\right)$	M1		
	$0.48^{2}=1.2^{2}\left(0.5^{2}-y^{2}\right)$	A1ft		
	Possible values are 2.2 and 2.8	A1		
(iii) $\left[\mathrm{t}_{0}=\left(\sin ^{-1} 0.6\right) / 1.2 ; \mathrm{t}_{1}=\left(\cos ^{-1} 0.6\right) / 1.2\right]$		M1		For using $y=0.5 \sin 1.2 t$ to find t_{0} or y $=0.5 \cos 1.2 \mathrm{t}$ to find t_{1}
	$\mathrm{t}_{0}=0.53625 \ldots . \text { or } \mathrm{t}_{1}=0.7727 \ldots \ldots$ (a)	A1		Principal value may be implied
	${ }^{\text {(a) }}$ [2($\left.\sin ^{-1} 0.6\right) / 1.2$ or $\left.\left(\pi-2 \cos ^{-1} 0.6\right) / 1.2\right]$	M1		For using $\Delta t=2 t_{0}$ or $\Delta \mathrm{t}=\mathrm{T} / 2-2 \mathrm{t}_{1}$
	Time interval is 1.07 s (b)	A1ft		ft incorrect t_{0} or t_{1}
				From $\Delta \mathrm{t}=\mathrm{T} / 2-2 \mathrm{t}_{0}$ or $\Delta \mathrm{t}=2 \mathrm{t}_{1} ; \mathrm{ft}$ 2.62 - ans(a) or
	Time interval is 1.55 s	B1ft	5	incorrect t_{0} or t_{1}

4731 Mechanics 4

1	By conservation of angular momentum $\begin{aligned} 1.5 \times 21+I_{G} \times 36 & =1.5 \times 28+I_{G} \times 34 \\ I_{G} & =5.25 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1A1 } \\ \text { A1 } \end{array}$	4	Give A 1 for each side of the equation or $1.5(28-21)=I_{G}(36-34)$
2 (i)	Using $\omega_{1}^{2}=\omega_{0}^{2}+2 \alpha \theta$, $\begin{aligned} & 0^{2}=8^{2}+2 \alpha(2 \pi \times 16) \\ & \alpha=-\frac{1}{\pi}=-0.318 \end{aligned}$ Angular deceleration is $0.318 \mathrm{rads}^{-2}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$		$\text { Accept }-\frac{1}{\pi}$
(ii)	$\begin{aligned} \text { Using } \omega_{1}^{2}=\omega_{0}^{2}+2 \alpha \theta, \quad \omega^{2} & =8^{2}+2 \alpha(2 \pi \times 15) \\ \omega & =2 \mathrm{rads}^{-1} \end{aligned}$	M1 A1 ft		or $0^{2}=\omega^{2}+2 \alpha(2 \pi)$ ft is $\sqrt{64-60 \pi\|\alpha\|}$ or $\sqrt{4 \pi\|\alpha\|}$ Allow Al for $\omega=2$ obtained using $\theta=16$ and $\theta=15$ (or $\theta=1$)
(iii)	Using $\omega_{1}=\omega_{0}+\alpha t, \quad 0=\omega+\alpha t$ $t=2 \pi=6.28 \mathrm{~s}$	M1 A1 ft		or $2 \pi=0 t-\frac{1}{2} \alpha t^{2}$ ft is $\frac{\omega}{\|\alpha\|}$ or $\sqrt{\frac{4 \pi}{\|\alpha\|}}$ Accept 2π
3	$\begin{aligned} A= & \int_{0}^{3}\left(2 x+x^{2}\right) \mathrm{d} x \\ = & {\left[x^{2}+\frac{1}{3} x^{3}\right]_{0}^{3}=18 } \\ A \bar{x} & =\int_{0}^{3} x\left(2 x+x^{2}\right) \mathrm{d} x \\ & =\left[\frac{2}{3} x^{3}+\frac{1}{4} x^{4}\right]_{0}^{3}=\frac{153}{4}=38.25 \\ & \bar{x}=\frac{38.25}{18}=\frac{17}{8}=2.125 \\ A \bar{y}= & \int_{0}^{3} \frac{1}{2}\left(2 x+x^{2}\right)^{2} \mathrm{~d} x \\ & =\int_{0}^{3}\left(2 x^{2}+2 x^{3}+\frac{1}{2} x^{4}\right) \mathrm{d} x \\ = & {\left[\frac{2}{3} x^{3}+\frac{1}{2} x^{4}+\frac{1}{10} x^{5}\right]_{0}^{3}=82.8 } \\ & \bar{y}=\frac{82.8}{18}=4.6 \end{aligned}$		9	Definite integrals may be evaluated by calculator (i.e with no working shown) Integrating and evaluating (dependent on previous M1) or $\int_{0}^{15}(3-(\sqrt{y+1}-1)) y \mathrm{~d} y$ Arranging in integrable form Integrating and evaluating SR If $1 / 2$ is missing, then M0M1M1AO can be earned for \bar{y}

4 (i)	$\begin{aligned} w^{2} & =6.3^{2}+10^{2}-2 \times 6.3 \times 10 \cos 50^{\circ} \\ w & =7.66 \mathrm{~ms}^{-1} \\ \frac{\sin \alpha}{6.3} & =\frac{\sin 50^{\circ}}{w} \\ \alpha & =39.04^{\circ} \quad\left(\beta=90.96^{\circ}\right) \end{aligned}$ Bearing is $205-\alpha=166^{\circ}$	B1 M1 A1 M1 A1	Correct velocity triangle This mark cannot be earned from work done in part (ii)
	$\begin{array}{rr} \text { OR }\binom{6.3 \sin 75}{6.3 \cos 75}-\binom{10 \sin 25}{10 \cos 25}=\binom{1.859}{-7.433} & \text { M1A1 } \\ w=\sqrt{1.859^{2}+7.433^{2}}=7.66 & \text { M1 } \\ \text { Bearing is } 180-\tan ^{-1} \frac{1.859}{7.433}=166^{\circ} & \text { A1 } \end{array}$		Finding magnitude or direction
(ii)	As viewed from B $\begin{aligned} d & =2500 \sin 14.04 \\ & =607 \mathrm{~m} \end{aligned}$	B1 ft M1 A1	Diagram showing path of A as viewed from $B \quad$ May be implied Or B1 for a correct (ft) expression for d^{2} in terms of t or other complete method Accept 604.8 to 609 $S R$ If $\beta=89^{\circ}$ is used, give A1 for 684.9 to 689.1

5 (i)	$\begin{aligned} V & =\int_{a}^{4 a} \pi(a x) \mathrm{d} x \\ & =\left[\frac{1}{2} \pi a x^{2}\right]_{a}^{4 a}=\frac{15}{2} \pi a^{3} \end{aligned}$ Hence $m=\frac{15}{2} \pi a^{3} \rho$ $\begin{aligned} I & =\sum \frac{1}{2}\left(\rho \pi y^{2} \delta x\right) y^{2}=\int \frac{1}{2} \rho \pi y^{4} \mathrm{~d} x \\ & =\int_{a}^{4 a} \frac{1}{2} \rho \pi a^{2} x^{2} \mathrm{~d} x \\ & =\left[\frac{1}{6} \rho \pi a^{2} x^{3}\right]_{a}^{4 a}=\frac{21}{2} \rho \pi a^{5} \\ & =\frac{7}{5}\left(\frac{15}{2} \pi a^{3} \rho\right) a^{2}=\frac{7}{5} m a^{2} \end{aligned}$	M1 M1 M1 M1 A1 A1 ft A1 A1 (ag)	(Omission of π is an accuracy error) For $\int y^{4} \mathrm{~d} x$ Substitute for y^{4} and correct limits
(ii)	$\begin{aligned} & \text { MI about axis, } \begin{array}{l} I_{A}=\frac{7}{5} m a^{2}+m a^{2} \\ =\frac{12}{5} m a^{2} \\ \text { Period is } 2 \pi \sqrt{\frac{I}{m g h}} \\ \quad=2 \pi \sqrt{\frac{\frac{12}{5} m a^{2}}{m g a}}=2 \pi \sqrt{\frac{12 a}{5 g}} \end{array} . \begin{array}{l} \end{array}+\frac{1}{2} \end{aligned}$	M1 A1 M1 A1 ft	Using parallel axes rule ft from any I with $h=a$
6 (i)	$\begin{aligned} I & =\frac{1}{3} m\left\{a^{2}+\left(\frac{3}{2} a\right)^{2}\right\}+m\left(\frac{1}{2} a\right)^{2} \\ & =\frac{13}{12} m a^{2}+\frac{1}{4} m a^{2}=\frac{4}{3} m a^{2} \end{aligned}$	M1 M1 A1 (ag)	MI about perp axis through centre Using parallel axes rule
(ii)	By conservation of energy $\begin{aligned} \frac{1}{2}\left(\frac{4}{3} m a^{2}\right) \omega^{2}-\frac{1}{2}\left(\frac{4}{3} m a^{2}\right) \frac{9 g}{10 a} & =m g\left(\frac{1}{2} a-\frac{1}{2} a \times \frac{3}{5}\right) \\ \frac{2}{3} m a^{2} \omega^{2}-\frac{3}{5} m g a & =\frac{1}{5} m g a \\ \omega^{2} & =\frac{6 g}{5 a} \end{aligned}$	M1 A1 A1 (ag)	Equation involving KE and PE
(iii)	$\begin{aligned} m g \cos \theta-R & =m\left(\frac{1}{2} a\right) \omega^{2} \\ m g \times \frac{3}{5}-R & =\frac{3}{5} m g \\ R & =0 \\ m g\left(\frac{1}{2} a \sin \theta\right) & =I \alpha \\ \alpha & =\frac{3 g}{10 a} \\ m g \sin \theta-S & =m\left(\frac{1}{2} a\right) \alpha \\ S & =\frac{4}{5} m g-\frac{3}{20} m g \\ & =\frac{13}{20} m g \end{aligned}$	M1 A1 A1 (ag) M1A1 A1 M1A1 A1	Acceleration $r \omega^{2}$ and three terms (one term must be R) $S R \quad m g \cos \theta+R=m\left(\frac{1}{2} a\right) \omega^{2} \Rightarrow R=0$ earns M1A0A1 Applying $L=I \alpha$ Acceleration $r \alpha$ and three terms (one term must be S) or $S\left(\frac{1}{2} a\right)=I_{G} \alpha=\frac{13}{12} m a^{2} \alpha$

7 (i)	$\begin{aligned} U= & 3 m g x+2 m g(3 a-x) \\ & +\frac{m g}{2 a}(x-a)^{2}+\frac{2 m g}{2 a}(2 a-x)^{2} \\ = & \frac{m g}{2 a}\left(3 x^{2}-8 a x+21 a^{2}\right) \\ \frac{\mathrm{d} U}{\mathrm{~d} x}= & 3 m g-2 m g+\frac{m g}{a}(x-a)-\frac{2 m g}{a}(2 a-x) \\ = & \frac{3 m g x}{a}-4 m g \end{aligned}$ When $x=\frac{4}{3} a, \frac{\mathrm{~d} U}{\mathrm{~d} x}=4 m g-4 m g=0$ so this is a position of equilibrium $\begin{aligned} \frac{\mathrm{d}^{2} U}{\mathrm{~d} x^{2}} & =\frac{3 m g}{a} \\ & >0, \text { so equilibrium is stable } \end{aligned}$	B1B1 B1B1 M1 A1 A1 (ag) M1 A1 (ag)	Can be awarded for terms listed separately Obtaining $\frac{\mathrm{d} U}{\mathrm{~d} x}$ (or any multiple of this)
(ii)	KE is $\frac{1}{2}(3 m) v^{2}+\frac{1}{2}(2 m) v^{2}$ Energy equation is $U+\frac{5}{2} m v^{2}=$ constant Differentiating with respect to t $\left\{\begin{aligned} \left(\frac{3 m g x}{a}-4 m g\right) \frac{\mathrm{d} x}{\mathrm{~d} t}+5 m v \frac{\mathrm{~d} v}{\mathrm{~d} t} & =0 \\ \frac{3 g x}{a}-4 g+5 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =0 \\ \text { Putting } x=\frac{4}{3} a+y, \quad \frac{3 g y}{a}+5 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}} & =0 \\ \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}} & =-\frac{3 g}{5 a} y \end{aligned}\right.$ Hence motion is SHM with period $2 \pi \sqrt{\frac{5 a}{3 g}}$	M1A1 M1 A1 ft A1 ft M1A1 ft A1 (ag) A1	Differentiating the energy equation (with respect to t or x) Condone \ddot{x} instead of \ddot{y} Award M1 even if $K E$ is missing Must have $\ddot{y}=-\omega^{2} y$ or other satisfactory explanation

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

1(i)	(a) -1 (b) 0	$\begin{array}{ll} \hline \text { B1 } \\ \text { B1 } & 2 \end{array}$	```allow \(\approx-1\) or close to -1 not "strong corr'n", not -0.99 allow \(\approx 0\) or close to 0 not "no corr'n"```
(ii)	$\begin{array}{lllllllll} \begin{array}{rrrrrrrr} 1 & 3 & 2 & 1 & \text { or } 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 & 4 & 2 & 1 & 3 \\ \Sigma d^{2} & & & (=14) & & \\ 1- & -\frac{6 \Sigma d^{2}}{4\left(4^{2}-1\right)} \\ = & & & & & \\ =-0.4 & \text { oe } \end{array} \end{array}$	M1 A1 M1 M1 A1 5	Ranks attempted, even if opp Dep M1 or $S_{x y}=23-{ }^{-100} / 4$ or $S_{x x}=S_{y y}=30--^{100} / 4$ Dep $2^{\text {nd }}$ M1 $\quad S_{x y} / /\left(S_{x x} S_{y y}\right)$
Total		7	
2(i)	${ }^{{ }^{7} \mathrm{C}_{2} \frac{x^{8}}{}{ }^{\frac{8}{5}} \mathrm{C}_{5} \underline{{ }^{3}}}$ $={ }^{56} / 143 \text { or }{ }^{1176} / 3003 \text { or } 0.392(3 \mathrm{sfs})$	M1 M1 A1 3	${ }^{7} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{3}$ or 1176 : M1 $($ Any C or P$) /{ }^{15} \mathrm{C}_{5}$ $:$ M1 $(\operatorname{dep}<1)$ or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or 0.0392: M1 $\times^{5} \mathrm{C}_{2}$ or $\times 10 \quad:$ M1 (dep ≥ 4 probs mult) if $2 \leftrightarrow 3$, treat as MR max M1M1
(ii)	3 ! $\times 2$! or ${ }^{3} \mathrm{P}_{3} \mathrm{x}^{2} \mathrm{P}_{2}$ not in denom $=12$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & \text { BABAB seen: M1 } \\ & 120-12: \text { M1A0 } \\ & \text { NB }^{4!} / 2!=12: \text { M0A0 } \end{aligned}$
Total		5	
3(i)(a)	0.9368 or 0.937	B1 1	
(b)	$\begin{aligned} & 0.7799-0.5230 \text { or }{ }^{8} \mathrm{C}_{5} \times 0.45^{3} \times 0.55^{5} \\ & =0.2569 \end{aligned} \text { or } 0.2568 \text { or } 0.257$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Allow 0.9368 - 0.7799
(c)	$\begin{array}{ll}0.7799 \text { seen } \\ -0.0885 \\ =0.691 \\ 10 & (3 \mathrm{sfs})\end{array} \quad$ (not $\left.1-0.0885\right)$	M1 M1 A1 3	1 term omitted or wrong or extra: M1
(ii)(a)	$\begin{aligned} & { }^{10} \mathrm{C}_{2} \times(1 / 12)^{8} \times\left(\frac{5}{12}\right)^{2} \text { seen } \\ & =0.105(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	or 0.105 seen, but not ISW for A1
(b)	$2^{31} / 72$ or ${ }^{175} / 72$ or $2.43(3 \mathrm{sfs})$	B1 1	$\mathrm{NB}^{12 / 5}=2.4 \mathrm{~B} 0$
Total		9	
4(i)	$\begin{aligned} & 1 / 20 \times 1 / 10 \text { or } 1 / 200 \text { or } 0.005 \\ & \times 2 \\ & =1 / 100 \text { or } 0.01 \end{aligned}$	M1 M1dep A1 3	
(ii)	$\begin{aligned} & \mathrm{E}(X)=0+50 \mathrm{x}^{1} / 10^{10}+500 \mathrm{x}^{1} / 20 \text { or } \\ & 0+0.5 \mathrm{x}^{1 / 10}+5 \mathrm{x}^{1} / 20 \\ & =30 \mathrm{p} \\ & \text { Charge " } 30 \mathrm{p} \text { " }+20 \mathrm{p} \quad \text { or } 0.3+0.3 \\ & =50 \mathrm{p} \quad \text { or } 0.50 \text { or } 0.5 \end{aligned}$	M1 A1 M1 A1 4	
Total		7	

5(i)	$\begin{aligned} & 12 / 22 \times^{11 / 21} \\ & =2 / 7 \text { oe or } 0.286(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or ${ }^{12} \mathrm{C}_{2} /{ }^{22} \mathrm{C}_{2}$
(ii)	$\begin{aligned} & { }^{7} / 15 \times 6 / 14 x^{8 / 13} \\ & \times 3 \text { oe }{ }^{8 / 65} \text { oe } \\ & ={ }^{24} / 65 \text { or } 0.369(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(iii)	$\frac{x}{45} \times \frac{x-1}{44}=\frac{1}{15} \quad$ oe $\begin{aligned} & x^{2}-x-132=0 \quad \text { or } x(x-1)=132 \\ & (x-12)(x+11)=0 \\ & \text { or } x=1 \pm \frac{/\left(1^{\frac{2}{2}}-4 \times(-132)\right)}{2} \end{aligned}$ No. of Ys $=12$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } 4 \end{aligned}$	not $\frac{x}{45} \times \frac{x}{44}=\frac{1}{15}$ or $\frac{x}{45} \times \frac{x}{45}=\frac{1}{15}$ or $\frac{x}{45} \times \frac{x-1}{45}=\frac{1}{15}$ oe ft 3-term QE for M1 condone signs interchanged allow one sign error Not $x=12$ or -11 ans 12 from less wking, eg $12 \times 11=132$ or T \& I: full mks Some incorrect methods: $\begin{array}{ll} \frac{x}{45} \times \frac{x-1}{44}=\frac{1}{15} & \text { oe } \\ x^{2}+x=132 & \text { M1 } \\ x=11 & \text { A0 } \\ 12 \times 11=132 & \text { M1A0 } \\ x=12 \text { and (or "or") } & \text { M11A1M1 } \end{array}$ NB 12 from eg 12.3 rounded, check method
Total		9	

6(i)(a)	256	B1 1	
			(i)(b) \& (ii)(abc): ISW ie if correct seen ignore extras
(b)	Total unknown or totals poss diff or Y13 may be smaller or similar or size of pie chart may differ	B1 1	pie chart shows only proportions oe or no. of students per degree may differ not "no. of F may be less" not "Y13 may be larger"
(ii)(a)	B\&W does not show frequencies oe	B1 1	or B\&W shows spread or shows mks or M lger range
(b)	F generally higher or median higher F higher on average or F better mks F IQR is above M IQR F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewed	B1 $\text { B1 } 2$	1 mk about overall standard, based on median or on F's IQR being "higher" 1 mk about spread (or range or IQR) or about skewness. must be overall, not indiv mks must be comparison, not just figures Examples: not F higher mean not M have hiest and lowest mks condone F + ve skew
(c)	Advantage: B\&W shows med or Qs or IQR or range or hiest \& lowest or key values Disadvantage: B\&W loses info' B\&W shows less info' B\&W not show freqs B\&W not show mode $\mathrm{B} \& \mathrm{~W}$: outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from hist	B1 $\text { B1 } 2$	not B\&W shows skewness not $\mathrm{B} \& \mathrm{~W}$ shows info at a glance not B\&W easier to compare data sets not B\&W shows mean not B\&W shows spread not B\&W easier to calculate or easier to read not B\&W does not give indiv (or raw) data not B\&W does not show mean not hist shows freq for each mark not hist shows all the results not hist shows total allow adv of hist as disadv of B\&W
(iii)	$\begin{aligned} & 102 \times 51+26 \times 59 \\ & \div 128 \\ & =52.6(3 \mathrm{sfs}) \end{aligned}$	M1 M1dep A1 3	or $5202+1534$ or 6736
Total		10	

7(i)	$\begin{aligned} & \text { Geo stated } \\ & 0.7^{3} \times 0.3 \\ & 1029 / 1000 \text { oe or } 0.103(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or implied by $0.7^{r} \mathrm{x} 0.3$ or $0.3^{r} \mathrm{x} 0.7$ Allow $0.7^{4} \times 0.3$
(ii)	0.7^{6} alone $=0.118(3 \mathrm{sfs})$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$1-\left(0.3+0.3 \times 0.7+\ldots+0.3 \times 0.7^{5}\right) \quad$ not $1-0.7^{6}$
(iii)	$\begin{aligned} & 0.7^{9} \\ & 1-0.7^{9} \\ & 0.960(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	not 0.3×0.7^{9} allow $1-0.7^{10}$ or 0.972 for M1 allow 0.96 , if no incorrect wking seen $0.3+0.7 \times 0.3+\ldots .+0.7^{8} \times 0.3: \text { M2 }$ 1 term omitted or wrong or "correct" extra: M1
(iv)	Bin stated $\begin{aligned} & { }^{5} \mathrm{C}_{2} \times 0.7^{3} \times 0.3^{2} \text { or } 0.8369-0.5282 \\ & =0.3087 \text { or } 0.309(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or implied by table or ${ }^{n} \mathrm{C}_{r}$ or $0.7^{3} \times 0.3^{2}$ or 0.0309
Total		11	
8(i)	$\begin{aligned} & \frac{168.6-\frac{88 \times 16.4}{8}}{\sqrt{\left(1136-\frac{88^{2}}{8}\right)\left(34.52-\frac{16.4^{2}}{8}\right)}} \\ & =-0.960(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	$\left(=\frac{-11.8}{\sqrt{168 \times 0.9}}\right)$ M1: correct subst in any correct S formula M2: correct substn in any correct r formula allow -0.96, if no incorrect wking seen
(ii)	must refer to, or imply, external constraint on x e.g x is controlled or values of x fixed or chosen allow x is fixed	B1 1	not x is not random not x affects y not x not affected by y not x goes up same amount each time not charge affects no. of vehicles not x not being measured
(iii)	$\begin{aligned} & \frac{168.6-\frac{88 \times 16.4}{8}}{1136-\frac{88^{2}}{8}} \\ & =-0.0702(3 \mathrm{sfs}) \text { or }-{ }^{59} / 840 \text { or } ~^{11.8} / 168 \\ & y-{ }^{16.4} / 8="-0.0702 "\left(x-{ }^{88} / 8\right) \\ & y=-0.07 x+2.8 \text { or better } \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4\end{array}$	ft their $S_{x y}$ and $S_{x x}$ incl ${ }^{168.6 / 1136}$ if used in (i) or -0.07 if no incorrect wking or $a=16.4 / 8-("-0.0702 ") \mathrm{x}^{88 / 8}$ or ${ }^{2371} / 840$ oe eg $y=-{ }^{59} / 840 x+{ }^{2371} / 840$
(iv)(a)	$\begin{aligned} & "-0.07 " \times 20+" 2.8 " \\ & =1.4(2) \text { million }(2 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \mathrm{M1} \\ \text { A1 } & 2 \end{array}$	no ft
(b)	r close to -1 or corr'n is high just outside given data, so reliable	B1 $\text { B1 } 2$	or good corr'n or pts close to line but not if "close to -1 , hence unreliable" if r low in (i), ft : " r low" or "poor corr'n" etc or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a)
(v)	$\begin{aligned} & y \text { on } x \\ & x \text { is indep } \end{aligned}$	$\begin{array}{ll} \mathrm{B} 1 & \\ \text { B1 } & 2 \end{array}$	or x controlled or y depends on x or y not indep dep on not " x on y " r close to -1 so makes little difference: B2
Total		14	

4733 Probability \& Statistics 2

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Significant evidence that time is unchanged" is also A0.

1 (i)	Biased in favour of those with strong political interest	B2	2	"Biased", "unrepresentative", "not indept" or equiv [but not "not random"] stated, with sensible reason. [SR: partial answer, B1]
(ii)	Obtain list of all pupils Allocate numbers sequentially Choose using random numbers	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	3	List, can be implied; number serially or randomly, not just "number pupils" Select consistently with method of numbering, not just "select randomly" [SR: systematic: List B1, every $n^{\text {th }}$ B1, random start B1] [SR: names in a hat: B2]
	$\begin{aligned} & \Phi\left(\frac{24-30}{12}\right)-\Phi\left(\frac{20-30}{12}\right) \\ & =\Phi(-0.5)-\Phi(-0.833) \\ & =(1-0.6915)-(1-0.7976)=\mathbf{0 . 1 0 6 1} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$		Standardise one, allow $\sqrt{ } 12,12^{2}, \sqrt{ } n$ Both standardisations correct, allow cc here Correct handling of tails [0.3085-0.2024] Answer, a.r.t. 0.106, c.a.o.
	Not symmetrical (skewed) Therefore inappropriate	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \hline \end{aligned}$	2	Any comment implying not symmetric Conclude "not good model" [Partial answer: B1]
$\begin{array}{r}3 \\ \\ \\ \\ \\ \hline\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: \mu=28 \\ & \mathrm{H}_{1}: \mu \neq 28 \\ & \sigma^{2}=37.05 \times 40 / 39 \quad[=38] \\ & z=\frac{26.44-28}{\sqrt{38 / 40}}=-1.601 \\ & \text { Compare }-1.645, \text { or } 0.0547 \text { with } 0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{B} 2 \\ \\ \mathrm{M} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~B} 1 \\ \hline \end{array}$		Both hypotheses correctly stated; one error, allow wrong or no letter, but not x or t or \bar{x}, B1 Multiply 37.05 or $\sqrt{ } 37.05$ by $n /(n-1)$ or $\sqrt{ }[n /(n-1)$] Standardise with V_{n}, allow $\sqrt{ }$ errors, cc, + Correct z, a.r.t -1.60 , or $p \in[0.0547,0.0548]$ Explicit comparison of z with -1.645 or p with 0.05
	$\begin{aligned} & \text { Critical value } 28-z \sigma / \sqrt{ } n \quad[=26.397] \\ & z=1.645 \\ & \text { Compare } 26.44 \text { with } 26.40 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \sqrt{2} \\ \hline \end{array}$		Allow " \pm ", $\sqrt{ }$ errors, cc, ignore other tail $z=1.645$ in CV expression, and compare 26.44 $\mathrm{CV}, \sqrt{ }$ on their z, rounding to 3 SF correct
	Do not reject H_{0} [can be implied] Insufficient evidence that time taken has changed.	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \sqrt{ } \end{array}$	8	Needs $\sqrt{ } n$, correct method \& comparison, not $\mu=26.44$ Conclusion interpreted in context, $\sqrt{ }$ on z,
$\begin{array}{rr}4 & \text { (i) } \\ \\ & \\ & \text { (iit) }\end{array}$	$\frac{53-50}{\sigma / \sqrt{10}}<2.326$ $\sigma>4.08$ [Allow \geq]	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	4	Standardise with 10 or $\sqrt{ } 10$ and Φ^{-1} Both sides same sign, $\sqrt{ } 10$, don't worry about $<$ 2.326 or 2.33 seen Convincingly obtain $\sigma>4.08$ to 3 SF , one other step [SR: Substitution: standardise \& substitute 4.08 M1; $0.0101 \mathrm{~A} 1 ; 4.07$ or 4.075 tried, M1; full justification A1]
	$\begin{aligned} & \begin{array}{l} \mathrm{P}(\text { Type I })=0.01 \text { used, e.g. Geo }(0.01) \\ 0.99^{4} \times 0.01 \\ =\mathbf{0 . 0 0 9 6} \end{array} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	3	Not enough merely to state $p=0.01$ $p^{4} \times q$ Answer, a.r.t. 0.0096
5	$\begin{aligned} & \int_{-1}^{1} \frac{3}{4}\left(x^{2}-x^{4}\right) d x= \frac{3}{4}\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{-1}^{1}[=1 / 5] \\ & 1 / 5-0^{2} \\ &=\mathbf{1} / \mathbf{5} \end{aligned}$	M1 A1 B1 A1	4	Attempt $\int_{-1}^{1} x^{2} \mathrm{f}(x) d x$ Correct indefinite integral Mean 0 clearly indicated Answer $1 / 5$ or a.r.t. 0.200 , don't need $\mu=0$
		B1 M1 A1 B1dep depB1	5	Correct graph, don't need $\mathrm{f}(x)$ as well. Don't allow if graph goes further below axis than "pips". Don't worry too much about exact shape Mention areas or total probability Convincing argument, not just "flatter" W greater... ...with convincing reason

6	(a)	$\begin{aligned} & \operatorname{Po}(2.375) \\ & e^{-2.375}\left(\frac{2.375^{3}}{3!}+\frac{2.375^{4}}{4!}\right) {[=0.2079+0.1233] } \\ &= \mathbf{0 . 3 3 1 0} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	$\mathrm{Po}(19 / 8)$ stated or implied One correct Poisson formula, not tables Complete correct expression, including addition Answer, a.r.t. 0.331 [SR: $\mathrm{Po}(2)$ or $\mathrm{Po}(2.4)$ and tables, M1]
	(b)	(i) $\quad \begin{array}{lll}n \text { large } & \text { OR } & n>50 \\ p \text { small } & \text { OR } & n p<5\end{array}$		2	Or equivalent $\quad[$ Allow \leq and \geq throughout] Or equivalent, e.g. $n p \approx n p q$, or $p<0.1$ [Treat " $n p<5, n p q<5$ " as single wrong statement]
		$\text { (ii) } \begin{aligned} & \mathrm{B}\left(108, \frac{1}{36}\right) \\ \approx & \operatorname{Po}(3) \\ 1-\mathrm{P}(\leq 3) & =1-0.6472 \\ & =\mathbf{0 . 3 5 2 8} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	5	Correct binomial distribution stated or implied $\operatorname{Po}(n p), \sqrt{ }$ on their n, p Po(3) Use Po tables, " $1-$ ", or correct formula, ± 1 term, e.g. 0.1847 ; a.r.t. 0.353 , allow from exact Binomial
7	(i)	Dropped catches must occur independently of one another and at constant average rate \qquad	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	"independently", in context, allow "random" "Constant average rate", in context ["Singly" doesn't gain B1]
	(ii)	Use: "Reject H_{0} when correct" Po(10) $P(\geq 16)=1-P(\leq 15)=1-0.9513$	M1 M1 M1 A1		Find $\mathrm{P}(\geq r)$ where $r>\lambda$, e.g. $\mathrm{P}(\geq 6)$ from $\mathrm{Po}(2)$ $\mathrm{Po}(10)$ stated or implied [can be recovered in (iii)] Seek biggest prob <0.05, e.g. 0.0835 or 0.0166 , allow 0.0293 but no other LH tail Answer in range [0.0487, 0.0488], cwd, cwo
	(iii)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=10 \text { or } 2 \quad[\text { or } \mu] \\ & \mathrm{H}_{1}: \lambda>10 \text { or } 2 \quad[\text { or } \mu] \\ & \alpha: \quad \begin{array}{l} \mathrm{P}(\geq 14)=1-0.8645=0.1355 \\ \\ \quad>0.05 \end{array} \end{aligned}$	B2 A1 B1		Hypotheses fully correct, allow λ or μ [SR: one error, B1, but r or R or x or \bar{x} : B0] $p \in[0.135,0.136]$ from $\mathrm{Po}(10)$ Compare explicitly with 0.05 or 0.0487
		$\beta: \quad \begin{array}{ll} \text { Critical region } r \geq 16, p=0.0487 \\ & \text { Compare } r=14 \end{array}$	$\begin{aligned} & \mathrm{A} 1 \sqrt{ } \\ & \mathrm{~B} 1 \sqrt{ } \end{aligned}$		$\sqrt{ }$ on answer from (ii)
		Do not reject H_{0} [can be implied] Insufficient evidence of an increase in the number of dropped catches	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } \end{aligned}$	10	Method correct, $\sqrt{ }$ on p, must be upper tail and " \geq " Conclusion interpreted in context [SR: $\mathrm{P}(\leq 14)=0.9165<0.95:(\mathrm{B} 2 \mathrm{M} 1)$ A0 B1 M0A0; same for $\mathrm{P}(>14)$ or $\mathrm{P}(=14)$] [SR: N(10,10): (ii) 0.05 M 0 . (iii) (B2) M1 A0 B1 M0A0]
8	(i)	$\mathrm{H}_{0}: p=0.4$ or $\mu=4.8$ $\mathrm{H}_{1}: p>0.4$ or $\mu>4.8$ $\mathrm{~B}(12,0.4)$ $\mathrm{P}(\geq 9)=1-0.9847=0.0153$ <0.05 Reject $\mathrm{H}_{0} \quad$ [can be implied] Significant evidence of increase in proportion of audience members who know sponsor's name	B2 M1 A1 B1 $\sqrt{ }$ M1 A1V	7	Both fully correct, B2. [SR: one error, B1, but x or R or r or \bar{x} : B0] $\mathrm{B}(12,0.4)$ stated or implied, e.g. 0.9972 or 0.9847 Or: CR is ≥ 9 and $p \in[0.015,0.0153]$ Explicitly compare with 0.05 , or 9 with $\geq 9, \sqrt{ }$ on $<$ Reject $\mathrm{H}_{0}, \sqrt{ }$ on probability, must be " \geq " Conclusion interpreted in context [SR: $\mathrm{P}(\leq 9)$ or $\mathrm{P}(=9)$ or $\mathrm{P}(>9)$: (B2 M1) A0 B1 M0A0] [SR: N(4.8, 2.88): (B2) M1 A0 B0 M0A0]
	(ii)	$\mathrm{N}(160,96)$	B1		Normal, mean 160
			B1		Variance (or SD) 96 [96/400: B2M0]
		$\frac{(x-0.5)-160}{\sqrt{96}}=1.645$	M1		
			A1		equate to Φ^{-1}; $\sqrt{ } 96$ and signs correct, ignore cc
			B1		RHS $=1.645$
		Solve to find $x[=176.6]$ Minimum value is $\mathbf{1 7 7}$	M1		Solve [implied by 177 or 176.6 or 176.1]
			A1	7	177 only, from 176.6, CWO [cc error: 6 ex 7]

4734 Probability \& Statistics 3

1 (i) $\frac{1}{99}\left(6115.04-\frac{761.2^{2}}{100}\right)$
$=3.240$
M1 AEF

A1 2

(ii) $761.2 / 100 \pm z \sqrt{ }(3.24 / 100)$
M1 $\quad z=1.282,1.645$, or 1.96
$z=1.96$
B1
(7.26,7.96)
A1 3 Allow from $\sigma^{2}=3.21$; allow 7.97 but not from wrong σ. Allow 4 or 5 SF but no more.
(iii) None necessary, since sample size large
OR:None necessary, n large enough for Central Limit theorem to apply
enough for sample mean to have a normal distribution
B1 1
[6]
$2(\bar{x}-12.6) / \sqrt{0.1195 / 10}$
M1 Any variable, correct mean, /10, ignore z
A1 All correct
1.383 seen
Solve for variable
B1
$\bar{x} \geq 12.75$
M1 Allow any symbol ($<,>,=$)
A1 5 Allow > ; 12.7 or 12.8 No z seen
[5]

3(i) Choice of newspaper is independent of level of income

B1 1 Or equivalent
(ii) Use df=4

EITHER: CV 13.28, from df=4 or sig. level Largest significance level is 1%

B1 May be implied by 13.28 seen or 0.0152 OR: $\operatorname{UseP}\left(\chi^{2}>12.32\right)$

M1 From tables
B1 Accept 0.01
Use of calculator
Largest significance level is 1.52%
B2 3 Accept 0.0152
[4]
SR: from df=6: CV 12.59 used ; $\mathrm{SL}=5 \%$: B0M1B1

4(i) $\quad \int_{0}^{1} \frac{4}{3} x^{3} d x+\int_{1}^{2} \frac{4}{3 x^{3}} d x \quad$ Limits seen anywhere \quad M1 \quad For both integrals OR $1-\int_{2}^{\infty} \frac{4}{3 x^{3}} d x$
$\left[\frac{x^{4}}{3}\right]_{0}^{1}+\left[-\frac{2}{3 x^{2}}\right]_{1}^{2}$
A1 For both
OR $1-\left[-\frac{2}{3 x^{2}}\right]_{2}^{\infty}$
$5 / 6$
A1 3
(ii) EITHER: $\int_{0}^{1} \frac{4}{3} x^{3} d x=\frac{1}{3}$
$<1 / 2$
M1

Median must exceed 1
OR:
$m=\sqrt{ }(4 / 3)$
$>1 \quad \mathrm{AG}$

Attempt to find median
M0 for $1.5^{1 / 4}$
3 Accept 1.15..
(iii) $\int_{0}^{1} \frac{4}{3} x^{4} \mathrm{~d} x+\int_{1}^{\infty} \frac{4}{3 x^{2}} \mathrm{~d} x$
$\left[4 x^{5} / 15\right]+[-4 /(3 x)]$
1.6
M1 Correct form for at least one integral
B1 Both integrals correct without limits
A1 3 AEF
(iv) $\mathrm{E}\left(X^{2}\right)=\ldots .+\int_{1}^{\infty} \frac{4}{3 x} \mathrm{~d} x$

M1 For second integral
Second integral $=\left[\frac{4}{3} \ln x\right]_{1}^{\infty}$
This is not finite, (so variance not finite)
A1
A1 3 AEF
[12]

5 (i) Justify a relevant Poisson approximation
M1 Using $n>50$ or n large; $n p<5$ or p small (<0.1)
$\mathrm{E}(A)=75 \times 0.022(=1.65), \mathrm{E}(B)=90 \times 0.025(=2.25)$
B1B1
or $n p \approx n p q$
Sum of two independent Poisson variables X has a
Poisson distribution
A1
Mean $m=3.9$
B1 5 Accept Po(3.9)
(ii) $1-\mathrm{P}(\leq 5)$

M1 \quad Or From $\operatorname{Po}(m)$ Accept ≤ 4;
OR Exact 1 - sum of at least 5 correct terms
0.1994

A1 2 From calculator or tables, art 0.20
[7]
6 (i) Use $p_{s} \pm z s$
$z=2.326$
$s=\sqrt{ }(0.12 \times 0.88 / 50)$
(ii) $z(0.12 \times 0.88 / n)^{1 / 2}$
<0.05
Solve to obtain
$n>228.5$
$n \approx 229$ or 230

M1
B1
A1 Or /49
($0.013,0.227$) Allow limits if penalised in Q1
A1 4 Or $(0.012,0.228)$ from 49

M1 Any z
A1 \quad Allow $=$
M1 Must contain $\sqrt{ } n$
A1 \quad Accept $=$
A1 5 Must be integer [9]
7 (i) Each population of test scores should have normal distributions
$\begin{array}{lll}\text { B1 OR: Variances equal and normal distns } & \text { B1 } \\ \text { Context }\end{array}$
with equal variances
B1 2
(ii) EITHER:Cannot test for normality from data OR: Sample variances are close enough to accept population variances equal

Not variances are not equal
B1 $\quad 1$

(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{B}=\mu_{G}, \mathrm{H}_{1}: \mu_{B}>\mu_{G} \\ & s^{2}=(23 \times 86.79+17 \times 93.01) / 40 \\ & =89.4335 \\ & t=(1238.4 / 18-1526.8 / 24) /\left[s^{2}\left(18^{-1}+24^{-1}\right)\right]^{1 / 2} \\ & =1.758 \end{aligned}$ Use CV of 1.684 $1.758>1.684$ Reject H_{0} and accept there is sufficient evidence at the 5% significance level that teenage boys worry more, on average than teenage girls.	B1 M1 A1 M1 A1 A1 B1 M1 A1 $\sqrt{ } 9$	For both. No other variables. Allow words Finding pooled estimate of variance May be implied by later value of t With pooled estimate of variance All correct art 1.76, or - Consistent Compare correctly with their CV (t value) Not assertive Ft on their 1.758 SR:Using $s^{2}=93.01 / 18+86.79 / 24$: B1M0A0M1A0A1(for 1.749) B1M1 (from 1.645 or 1.684)A1 Max 6/9
8 (i)	$\begin{array}{ll} \sum x f / 80=1.9 & \text { AG } \\ \Sigma x^{2} f / 80-1.9^{2} & \\ 1.365 \text { or } 1.382 & \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	With evidence Or $\times 80 / 79$
	Poisson distribution requires equal mean and variance EITHER: No, mean and variance differ significantly OR: Yes, indicated by sample statistics taking into account sampling error	B1 $\text { B1 } 2$	May be indicated
	$\begin{aligned} & e^{-1.9} 1.9^{3} / 3! \\ & \times 80 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	Or from tables
(iv)	Considering sample as random selection of all similar matches H_{0} : Poisson suitable model Combine last two cells $\begin{aligned} & 0.97^{2} / 11.97+7.73^{2} / 22.73+11.40^{2} / 21.60 \\ & +2.32^{2} / 13.68+5.02^{2} / 10.02 \\ & =\mathbf{1 1 . 6 3} \\ & \text { CV } 7.815 \\ & 11.63>7.815 \end{aligned}$ There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)	B1 B1 M1 A1 A1 B1 *dep M1dep* $A 1 \sqrt{ } 8$	Any two correct All correct art 11.6 OR $p=0.00875$ OR $0.00875<0.05$ Ft (ii) SR: If last cells not combined: $\chi^{2}=12.3$ M1A1A1 CV $=9.448$ or $\mathrm{p}=0.0152$, $\mathrm{B} 1 *$ dep the M1dep*
	E-values or probabilities would change df would increase by 1	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \\ & {[\mathbf{1 7]}} \end{array}$	Or other valid observation Or CV would change

4735 Statistics 4

3 (i) Marginal distribution of X

x	0	1	2	3

$\begin{array}{llll}p & 0.27 & 0.23 & 0.32 \\ 0.18 & \text { B1 }\end{array}$
$1 \times 0.23+2 \times 0.32+3 \times 0.18$
M1
$=1.41$
A1 3
(ii) $\mathrm{P}(Y>X)=0.08+0.05+0.03+0.08+0.06+0.07 \quad \mathrm{M}$
$=0.37 \quad \mathrm{~A} 1$
A1 2
(iii) Use $\mathrm{P}(Y>X \cap X>0) / \mathrm{P}(X>0)$

M1

$\mathrm{P}(X>0)=0.73$
A1
$\mathrm{P}(Y>X \cap X>0)=0.08+0.06+0.07$
21/73
A1
4 AEF

(iv)The director cannot conclude independence M1 from cov. So director's conclusion incorrect.A1 OR: $\operatorname{Eg} \mathrm{P}(X=0 \cap Y=0)=0.11$, M1 $\mathrm{P}(X=0) \mathrm{P}(Y=0)=0.27 \times 0.29 \neq \mathrm{P}(X=0 \cap Y=0) \quad \mathrm{A} 1$

Idea that independence implies $\operatorname{cov}=0$ but not the reverse
4 (i) Variances seem not to be equal
B1 1
(ii) $\mathrm{H}_{0}: m_{M}=m_{A}, \mathrm{H}_{1}: m_{M} \neq m_{A}$
"average"
$R_{m}=40, m(m+n+1)-R_{m}=72$
M1
$W=40$
CR: $W \leq 38$
40 not in CR, so do not reject H_{0}
Insufficient evidence that median times differA1
B1
Both hypotheses, AEF. Not

Both found

A0 if no or wrong 72
Or equivalent
6 (7) In context. B1 if no M1 but conclusion correct Allow average here
5 (i) $a+b=3 / 4$
B1
$\mathrm{M}^{\prime}(0)=3^{3} / 8$
$1 / 2+3 a+4 b=33 / 8$
Solve simultaneously
$a=1 / 8 \quad$ AG
A1 6
From $M(0)=1$
AEF
Elimination or substitution
$b=5 / 8$
(ii) $\quad \mathrm{M}^{\prime \prime}(t)=\mathrm{e}^{2 t}+{ }^{9} / 8 \mathrm{e}^{3 t}+10 \mathrm{e}^{4 t}$
$M^{\prime \prime}(0)-\left(M^{\prime}(0)\right)^{2}$
${ }^{97} / 8-\left(3^{3} / 8\right)^{2} \quad ;{ }^{47} / 64$
(iii) $x=2,3,4$

6 (i)	$\mathrm{P}(Y>y)=1-\mathrm{F}(y)$	M1	Allow any variables
$=a^{3} / y^{3}$	A1		
	$\mathrm{P}(S>s)=\mathrm{P}($ all 3 values $>s)=(a / s)^{9} \mathrm{AG}$	A1	
$\mathbf{f}(s)=\mathrm{d} / \mathrm{d} s\left(1-(a / s)^{9}\right)$	M1		
	$= \begin{cases}9 \frac{a^{9}}{s^{10}} & s \geq a, \\ 0 & s<a\end{cases}$	A1	$\mathbf{5}$

(ii)	$\int_{a}^{\infty} \frac{a^{9}}{s^{9}} \mathrm{~d} s$	M1		
	$=9 a / 8$	A1		
	S not unbiased since this not equal to a	M1		
	$T_{1}=8 S / 9$	B1 $\sqrt{ }$	4	Ft E(S)
(iii)	$\operatorname{Var}\left(T_{1}\right)=a^{2} / 63, \operatorname{Var} T_{2}=a^{2} / 9$	M1 A1 for both		Correct method
	$\operatorname{Var}\left(T_{1}\right)<\operatorname{Var}\left(T_{2}\right), T_{1}$ is more efficient			
		A1V	3	Comparison, completion.. $\sqrt{ }$ one variance correct with same dimensions
(iv)	$t_{1}=4.0, t_{2}=5.4$	B1		Both
	From data $a \leq 4.5$ and $t_{2}>4.5$	B1B1	3 (15)	AEF

4736 Decision Mathematics 1

1	(i)	Biggest/largest/last number (only) (Not showing effect on a specific list)	B1	Accept bubbling to left unless inconsistent with part (ii): Smallest/first number	[1]
	(ii)	21345 horizontally or vertically (may see individual comparisons/swaps) [For reference: original list was 32154] 4 comparisons and 3 swaps (both correct)	M1 A1	Or bubbling to left: 13245 Watch out for shuttle sort used If not stated, assume that comparisons come first	[2]
	(iii)	12345 One (more pass after this)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT from their first pass with their bubbling if possible Watch out for 'One swap (in $2^{\text {nd }}$ pass)'	[2]
	(iv)	$\begin{aligned} & (3000 \div 500)^{2} \times 0.2 \\ & =7.2 \text { seconds } \end{aligned}$	M1 A1	$6^{2} \times 0.2 \text { or } 8 \times 10^{-7} \times 9 \times 10^{6}$ or any equivalent calculation cao UNITS	[2]
Total $=7$					

| 2 |
| :--- | :--- | :--- | :--- | :--- |

6	(a)(i)	Route Inspection (problem)	B1	Or Chinese postman (problem)	[1]
	(ii)	Odd nodes are A, B, C and D $A B=250 \quad A C=100$ $C D=\underline{200} \quad B D=200$ 450 Repeat $A C$ and $B F E D=350$ Length of shortest route $=3350$ metres	B1 M1 A1 B1	Identifying odd nodes (may be implied from working) Pairing odd nodes (all three pairings considered) M mark may not be implied 350 as minimum 3350 m or 3.35 km UNITS	[4]
	(iii)	C is an odd node, so we can end at another odd node. $A B=250 \quad A D=200 \quad B D=250$ Repeat $A D=200$ Length of route $=3200$ metres Route ends at B	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Working need not be seen May be implied from answer 3200 B	[3]
	(b)(i)	$D-G-C-A-E-F-B-H-D$ 1580 metres $A-C-D-G$ then method stalls	M1 A1 B1	Correct cycle If drawn then arcs must be directed 1580 Identifying the stall	[3]
	(ii)	Order of adding nodes: $B F E D G H C$ Total weight of tree $=640$ metres	M1 A1 B1 A1 B1	Use of Prim's algorithm to build tree (e.g. an attempt at list of arcs or order of adding vertices). NOT Kruskal Correct arcs chosen (listed or seen on tree) A correct tree with vertices labelled Order stated or clearly implied 640	[5]
	(iii)	$\begin{aligned} & \text { Lower bound }=640+100+200=940 \\ & 940 \text { metres } \leq \text { shortest tour } \leq 1580 \text { metres } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$300+$ weight of their tree their $940 \leq$ length \leq their 1580 (condone use of $<$ here)	[2]
Total $=18$					

For reference:

4737 Decision Mathematics 2

ANSWERED ON INSERT

3	(i)	$\begin{aligned} & \{S A, B, D, G\},\{C, E, F, T \text { (given) } \\ & A C=4, B C=2, B E=1, D E=2, G E=5, G T=6 \\ & 4+2+1+2+5+6 \\ & =20 \text { litres per minute } \end{aligned}$	M1 A1	Identifying the correct arcs, on a diagram or list or by using $4,2,1$, 2, 5, 6 20 from a correct calculation	[2]
	(ii)	At most 2 litres per minute can enter G so the arc $G E$ can carry at most 2 litres per minute	B1	Maximum into $G=2$	[1]
	(iii)	At most 8 litres per minute can flow into E Flow shown on diagram on insert Flow in = flow out for each vertex except S, T A feasible flow of 8 litres per minute through E	B1 M1 A1	8 A flow of the rate they have claimed through E (irrespective of whether it is feasible) (directions may not be changed, assume a blank means 0) No pipe capacities exceeded and flow through $E=8$	[3]
	(iv)	Arrows labelled on diagram $S A=0$ $A C=0$ $C F=0$ $F T=1$ $A S=4$ $C A=4$ $F C=4$ $T F=4$ $A B=3$ $B C=2$ $C E=3$ $E F=4$ $B A=0$ $C B=0$ $E C=0$ $F E=0$ $S B=4$ $B E=0$ $E T=5$ $B S=1$ $E B=1$ $T E=1$ $B D=3$ $D E=2$ $E G=0$ $D B=0$ $E D=0$ $G E=5$ $S D=0$ $D G=0$ $G T=4$ $D S=2$ $G D=2$ $T G=2$ 	M1 M1 A1	Assume blanks mean 0 Arrows on arcs on one of the routes SACFT, SBET, SDGT labelled correctly, or all labels on the route reversed Arrows on all three routes labelled correctly or all reversed All arrows labelled correctly, not reversed	[3]
	(v)	Amount that flows along $S B D E T=2$ litres per min $\begin{array}{llll} S B=42 & B D=31 & D E=20 & E T=53 \\ B S=13 & D B=02 & E D=02 & T E=13 \\ \hline \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	2 For arrows on route $S B D E T$: Labels updated consistently These all labelled correctly (and not reversed)	[3]
	(vi)	Route used $=S B C E T$	B1 M1 A1	SBCET listed For arrows on route $S B C E T$: Labels updated consistently These all labelled correctly (and not reversed)	[3]
	(vii)		B1	Follow through their (v) and (vi) if possible Assume blanks mean 0	[1]
	(viii)	Eg cut through arcs $S A, S B, S D$ Or $\operatorname{arcs} A C, B C, B E, D E, D G$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	A suitable cut chosen, indicated in any way Indicated by listing arcs cut	[2]
					= 18

PART (a) ANSWERED ON INSERT

4	(a)	Stage 2 1 1 0 Length Route $=$	State 0 1 2 0 1 2 2	Action 0 0 0 0 1 1 2 1 2 0 1 2 st path $=$ $(1 ; 1)-($	Working 13 2) - (3;0)	Suboptimal maximum 5 4 4 8 8 8 10 13	B1 M1 A1 B1 M1 A1 B1 B1	5, 4, 4 identified as suboptimal maxima for stage 2 Transferring suboptimal maxima from stage 2 to stage 1 correctly Correct additions or totals seen for all rows in stage 1 $8,8,10$ identified as suboptimal maxima for stage 1 (cao) Transferring suboptimal maxima from stage 1 to stage 0 correctly Correct additions or totals seen for all rows in stage 0 13 Correct route or in reverse (including ($0 ; 0$) and ($3 ; 0$))	[8]
	(b)(i)	C(2)					M1 A1	Condone directions missing Must be activity on arc A reasonable attempt, arcs should be labelled Any correct form Condone extra dummies provided precedences are not violated, accept networks with multiple end vertices Arc weights may be shown but are not necessary	[2]
	(ii)		 Mini		completio Critical	time $=13$ day ctivities B, G, L	M1 A1 M1 A1 B1 B1	Follow through their network if possible Values at vertices may be recorded using any consistent notation Forward pass with no more than one independent error Forward pass correct Backward pass with no more than one independent error (follow through their 13) Backward pass correct 13 stated, cao B, G, L correct answer only	[6]
	(iii)						B1 B1	Not follow through A directed dummy from end of G to start of K A directed dummy from end of G to start of L Condone extra dummies provided precedences are not violated Watch out for K following I	[2]
									= 18

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2008 Examination Series

Unit Threshold Marks

7892		Maximum Mark	A	B	C	D	E	U
4721	Raw	72	63	55	47	39	32	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	29	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	56	49	43	37	31	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	41	35	29	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	37	29	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	47	38	29	20	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	56	47	38	29	21	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	59	50	42	34	26	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	60	52	45	38	31	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	28	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	26	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	54	47	40	34	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 1}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 9 0}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 1}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{3 8 9 0}$	33.3	50.4	65.4	77.0	86.6	100	14679
$\mathbf{3 8 9 1}$	100	100	100	100	100	100	1
$\mathbf{3 8 9 2}$	57.2	76.7	88.2	94.1	97.6	100	1647
$\mathbf{7 8 9 0}$	45.4	67.3	82.4	92.1	97.8	100	10512
$\mathbf{7 8 9 1}$	33.3	66.7	100	100	100	100	6
$\mathbf{7 8 9 2}$	56.5	77.9	90.0	95.4	98.2	100	1660

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

